DOI QR코드

DOI QR Code

Measurement System of Dynamic Liquid Motion using a Laser Doppler Vibrometer and Galvanometer Scanner

액체거동의 비접촉 다점측정을 위한 레이저진동계와 갈바노미터스캐너 계측시스템

  • Kim, Junhee (Department of Architectural Engineering, Dankook Univ.) ;
  • Shin, Yoon-Soo (Department of Architectural Engineering, Dankook Univ.) ;
  • Min, Kyung-Won (Department of Architectural Engineering, Dankook Univ.)
  • Received : 2018.06.11
  • Accepted : 2018.08.16
  • Published : 2018.10.31

Abstract

Researches regarding measurement and control of the dynamic behavior of liquid such as sloshing have been actively on undertaken in various engineering fields. Liquid vibration is being measured in the study of tuned liquid dampers(TLDs), which attenuates wind motion of buildings even in building structures. To overcome the limitations of existing wave height measurement sensors, a method of measuring liquid vibration in a TLD using a laser Doppler vibrometer(LDV) and galvanometer scanner is proposed in this paper: the principle of measuring speed and displacement is discussed; a system of multi-point measurement with a single point of LDV according to the operating principles of the galvanometer scanner is established. 4-point liquid vibration on the TLD is measured, and the time domain data of each point is compared with the conventional video sensing data. It was confirmed that the waveform is transformed into the traveling wave and the standing wave. In addition, the data with measurement delay are cross-correlated to perform singular value decomposition. The natural frequencies and mode shapes are compared using theoretical and video sensing results.

슬로싱과 같은 액체의 동적 거동을 측정하고 제어하는 연구가 다양한 공학분야에서 활발히 진행중이다. 건축공학분야에서도 건축물의 풍진동을 저감시키는 동조액체감쇠기의 연구에 액제 진동이 측정되고 있다. 본 논문에서는 기존 파고 측정 센서의 한계를 극복하기 위하여 레이저 장비 중 LDV와 스캐닝 장비 중 갈바노미터스캐너를 이용하여 동조액체감쇠기 내의 액체 진동을 측정하는 방법을 제안하고 검증하였다. LDV가 속도와 변위를 측정하는 원리를 기술하였고 갈바노미터스캐너의 구동 원리에 따라 LDV의 단일 포인트로 다점측정이 가능한 시스템을 구성하였다. 동조 액체감쇠기의 4점 액체 진동을 측정하여 각 점의 시간 영역 데이터를 기존에 사용하던 비디오 센싱 데이터와 비교하였고 파형 분석을 통해 진행파와 정상파를 구별할 수 있음을 확인하였다. 또한 측정 딜레이가 있는 데이터를 상호 상관을 취하여 특이값 분해를 하고 이론 및 비디오 센싱 결과와 일치하는 고유진동수와 모드형상을 도출하였다.

Keywords

References

  1. Abellan, A., Vilaplana, J.M., Martinezc, J. (2006) Application of a Long-range Terrestrial Laser Scanner to a Detailed Rockfall Study at Vall de Nuria, Eng. Geol., 88, pp.136-148. https://doi.org/10.1016/j.enggeo.2006.09.012
  2. Hani, H.N., Mayrai, G., Joe, D. (2005) Comparison of Laser Doppler Vibrometer with Contact Sensors for Monitoring Bridge Deflection and Vibration, NDT & E Int., 38, pp.213-218. https://doi.org/10.1016/j.ndteint.2004.06.012
  3. Jan, P.B.V. (2005) Spacecraft Maneuvers and Slosh Control, IEEE Control Syst., 25, pp.12-16.
  4. Jang, S.J., Kim, J.H., Min, K.W. (2014) Development of Variable Voltage Sensing for Identification of Dynamic Characteristics of TLCDs, Comput. J. Eng. Inst. Korea, 28(3), pp.275-282.
  5. Jung, J.H., Yoon, H.S., Lee, C.Y. (2015) Effect of Natural Frequency Modes on Sloshing Phenomenon in a Rectangular Tank, Int J. Nav. Archit. Ocean Eng.
  6. Kazuaki, S., Takahiro, O., Takeshi, H., Hidekuni, Ta., Makoto, I. (2005) A Novel Fused Sensor for Photo- and Ion-sensing, Sens. & Actuators B: Chem., 106, pp.614-618. https://doi.org/10.1016/j.snb.2004.07.029
  7. Kazuhiko, T., Ken'ichi, Y. (2001) Sloshing Analysis and Suppression Control of Tilting-type Automatic Pouring Machine, Control Eng. Pract., 9, pp.607-620. https://doi.org/10.1016/S0967-0661(01)00023-5
  8. Ken'ichi, Y., Kazuhiko, T. (2001) Robust Liquid Container Transfer Control for Complete Sloshing Suppression, IEEE Trans. Control Syst. Tech., 9 pp.483-493. https://doi.org/10.1109/87.918901
  9. Ken'ichi, Y., Kazuhiko, T. (2005) Sloshing Suppression Control of Liquid Transfer Systems Considering a 3-D Transfer Path, IEEE Trans. Control Syst. Tech., 9 pp.483-493.
  10. Ken'ichi, Y., Shimpei, H., Kazuhiko, T. (2002) Motion Control of Liquid Container Considering an Inclined Transfer Path, Control Engineering Practice, pp.465-472
  11. Kim, J.H., Kim, K.Y., Sohn, H. (2013) In Situ Measurement of Structural Mass, Stiffness, and Damping using a Reaction Force Actuator and a Laser Doppler Vibrometer, Smart Mater. & Struct. 22, 085004. https://doi.org/10.1088/0964-1726/22/8/085004
  12. Kim, J.H., Kim, K.Y., Sohn, H. (2014) Autonomous Dynamic Displacement Estimation from Data Fusion of Acceleration and Intermittent Displacement Measurements, Mech. Syst. & Signal Proc., 42, pp.194-205. https://doi.org/10.1016/j.ymssp.2013.09.014
  13. Kim, J.H., Park, C.S., Min, K.W. (2015) Easy-to-Tune Reconfigurable Liquid Column Vibration Absorbers with Multiple Cells, Smart Mater. & Struct., 24, 065041. https://doi.org/10.1088/0964-1726/24/6/065041
  14. Kim, J.H., Park, C.S., Min, K.W. (2016) Fast Vision-based Wave Height Measurement for Dynamic Characterization of Tuned Liquid Column Dampers, Measurement, 89, pp.189-196. https://doi.org/10.1016/j.measurement.2016.04.030
  15. Kim, K.Y., Kim, J.H. (2015) Dynamic Displacement Measurement of a Vibratory Object using a Terrestrial Laserscanner, Measurement Sci. & Tech., 045002.
  16. Kim, K.Y., Kim, J.H., Sohn, H. (2016) Development and Full-scale Dynamic Test of a Combined System of Heterogeneous Laser Sensors for Structural Displacement Measurement, Smart Mater. & Struct., 25, pp.65015-65028. https://doi.org/10.1088/0964-1726/25/6/065015
  17. Lee, S.K., Lee, H.R., Min, K.W. (2012) Experimental Verification on Nonlinear Dynamic Characteristic of a Tuned Liquid Column Damper Subjected to Various Excitation Amplitudes, Struct. Design Tall & Spec. Build., 21, pp.374-388. https://doi.org/10.1002/tal.606
  18. Lee, S.K., Park, J.H., Min, K.W. (2009) Experimental Evaluation of Design Parameters for TLCD and LCVA, Comput. J. Eng. Inst. Korea, 22(5), pp.403-410.
  19. Mattias, G. (1998) Motion Control of Open Containers with Slosh Constraints, Lund inst. Tech., pp.69-75.
  20. Mattias, Gr., Bo, B. (2000) Constrained Iterative Learning Control of Liquid Slosh in an Industrial Packaging Machine, IEEE Decision & Control, 5 pp.4544-4549.
  21. Min, K.W., Kim, Y.W., Kim, J.H. (2015) Analytical and Experimental Investigations on Performance of Tuned Liquid Column Dampers with Various Orifices to Wind-excited Structural Vibration, J. Wind Eng.& Ind. Aerodyn., 139, pp.62-69. https://doi.org/10.1016/j.jweia.2015.01.014
  22. Shin, Y.S., Min, K.W., Kim, J.H. (2016) Measurement of Liquid Oscillation in Tuned Liquid Dampers using a Laser Doppler Vibrometer, J. Eng. Inst. Korea, 22(5), pp. 513-519.
  23. William, P.D., Marschall, B.J. (1983) Average Correlations vs. Coreelated Averages, Bull. Psychonom. Soc., 21(3), pp.213-216. https://doi.org/10.3758/BF03334690