DOI QR코드

DOI QR Code

Method for Determination of Maximum Allowable Pressure of Pressure Vessel Considering Detonation

폭굉을 고려한 압력용기 최대허용압력 결정방법의 제안

  • Choi, Jinbok (Department of Research Reactor Development, Korea Atomic Energy Research Institute)
  • 최진복 (한국원자력연구원 연구로개발단)
  • Received : 2018.06.16
  • Accepted : 2018.09.12
  • Published : 2018.10.31

Abstract

The internal pressure is a critical parameter for designing a pressure vessel. The static pressure that a pressure vessel must withstand is usually determined according to the various codes and standards with simple formula or numerical simulations considering the geometric parameters such as diameter and thickness of a vessel. However, there is no specific codes or technical standards we can use practically for designing of pressure vessels which have to endure the detonation pressure. Detonation pressure is a kind of dynamic pressure which causes an impulsive pressure on the vessel wall in a extremely short time duration. In addition, it is known that the magnitude of reflected pressure at the vessel wall due to the explosion can be over twice the incident pressure. Therefore, if we only consider the reflected pressure, the design of the pressure vessel can be too conservative from the economical point of view. In this study, we suggest a practical method to evaluate the magnitude of maximum allowable pressure that the pressure vessel can withstand against the detonation inside a vessel. As an example to validate the proposed method, we consider the pressure vessel containing hydrogen gas.

압력용기의 내압은 압력용기 설계의 중요한 인자이며 이를 바탕으로 관련 설계기준 및 구조해석결과에 따라 압력용기의 두께 및 직경과 같은 기하학적 형상이 결정된다. 그러나 압력용기 내부에서 폭굉이 일어날 경우 이 폭굉압력을 적절히 고려하여 압력용기를 설계할 수 있는 설계기준은 미흡한 실정이다. 일반적으로 폭굉이 발생할 경우, 초기 폭굉압력이 용기 벽면에 도달하여 반사하는 반사압력은 초기압력의 2배 이상이라고 알려진다. 그러나 폭굉압력은 구조물의 고유주기보다도 짧은 시간 안에 최대치에 도달한 후 급격하게 감소하는 경향을 보이며, 이 경우 실제 용기벽면이 받게 되는 압력은 반사압력에 비해 매우 작을 수 있다. 따라서 본 연구에서는 이러한 폭굉의 특성을 고려하여 압력용기가 견뎌야 하는 적절한 등가의 폭굉압력을 산정하는 방법을 제안함으로써 폭굉을 고려한 효율적인 압력용기 설계기준을 제시하고자 하였다.

Keywords

References

  1. Balthasar, W., Schodel, J.P. (1983) Hydrogen Safety Manual, Commission of the European Communities, DG for Sience, Research and Development EUR 8396EN, Norway.
  2. Bjerketvedt, D., Bakke, J.R., Bakke, Wingerden, K. (1993) Gas Explosion Handbook, Christian Michelsen Research AS, Gas Explosions and Process Safety, Fantoft, Bergen.
  3. Browne, S., Ziegler, J., Shepherd, J.E. (2008) Numerical Solution Methods for Shock and Detonation Jump Conditions, GALCIT Report FM2006.006, California Institute of Technology, USA.
  4. Choi, H.B., Kim, H.S. (2015) Optimized TNT Equivalent Analysis Method for Medium and Small Scale Mixture Gas Explosion on Structural Elements, J. Archi. Inst. Korea, 31(11), pp.3-10.
  5. Crowl, W.K. (1969) Structures to Resist the Effects of Accidential Explosions, Technical Manual TM 5-1300, U.S. Army, Navy, and Air Force, U.S. Government Printing Office, Washington D.C.
  6. Hyde, D.W. (1988) User's Guide for Microcomputer Programs CONWEP and FUNPRO, Application of TM5-855-1, Report SL-88-1, US Army Corps of Engineers Waterways Experiment Station, Vicksburg, MS.
  7. Jeon, D.J., Han, S.E. (2016) Suggestion of Simplified Load Formula for Blast Simulation, J. Comput. Struct. Eng. Inst. Korea, 29(1), pp.67-74. https://doi.org/10.7734/COSEIK.2016.29.1.67
  8. Jo, E.S., Kim, M.S., Park, J.Y., Lee, Y.H. (2014) Behavior of Prestreesed Concrete Panels under Blast Load, J. Comput. Struct. Eng. Inst. Korea, 27(2), pp.113-120. https://doi.org/10.7734/COSEIK.2014.27.2.113
  9. Jo, Y.D. (2012) A Study on Physicochemical Characteristics of Hydrogen Gas Explosion, Journal of the Korean Institute of Gas, 16(1), pp.8-14. https://doi.org/10.7842/kigas.2012.16.1.8
  10. Kang, K.Y., Choi, K.H., Ryu, Y.H., Choi, J.W., Lee, J.M. (2015) Dynamic Response of Plate Structure Subject to the Characteristics of Explosion Load Profiles - Part B: Analysis for the Effect of Explosion Loading Time According to the Natural Period for Target Structures, J. Comput. Struct. Eng. Inst. Korea, 28(2), pp.197-205. https://doi.org/10.7734/COSEIK.2015.28.2.197
  11. Kim, K.C. (2012) Numerical Investigation of the Blast on Structures, Master's Thesis, Korea Advanced Institute of Science and Technology.
  12. Kim, K.J., Kim, H.S. (2017) Effect of Seismic Design Details in Reinforced Concrete Beams on Blast-Resistance Performance, J. Comput. Struct. Eng. Inst. Korea, 30(5), pp.427-434. https://doi.org/10.7734/COSEIK.2017.30.5.427
  13. Krauthammer, T. (2008) Modern Protective Structures, CRC Press.
  14. Ngo, T., Mendis, P., Gupta, A., Ramsay, J. (2007) Blast Loading and Blast Effects on Structures-An Overview, EJSE Special Issue: Loading and Structures.
  15. NIST (National Institute of Science and Technology), Chemistry WebBook.
  16. Pearce, D.G., Ward, D.L., Hayes, P. (1966) Liquid-Hydrogen Explosions in Containment Vessel, United Kingdom Atomic Energy Authority Research Group Report.
  17. Shepherd, J.E. (2009) Structural Response of Piping to Internal Gas Detonation, J. Press. Technol., 131(3), pp.1-20.
  18. Shepherd, J.E., Teodorcyzk, A., Knystautas, R., Lee, J.H. (1991) Shock Waves Produced by Reflected Detonations, Prog. Astronaut. & Aeronaut., 134, pp.244-264.
  19. US Department of the Army (1986) TM5-855-1, Fundamentals of Protective for Conventional Weapons, U.S. Department of the Army, Washington D.C.
  20. Ward, D.L., Pearce, D.G., Merrett, D.J. (1964) Liquid-Hydrogen Explosions in Closed Vessels, Adv. Cryog. Eng., 19, pp.390-400. Weapons.