A Study on Sensor Data Analysis and Product Defect Improvement for Smart Factory

스마트 팩토리를 위한 센서 데이터 분석과 제품 불량 개선 연구

  • Received : 2018.08.10
  • Accepted : 2018.08.31
  • Published : 2018.08.31

Abstract

In recent years, many people in the manufacturing field have been making efforts to increase efficiency while analyzing manufacturing data generated in the process according to the development of ICT technology. In this study, we propose a data mining based manufacturing process using decision tree algorithm (CHAID) as part of a smart factory. We used 432 sensor data from actual manufacturing plant collected for about 5 months to find out the variables that show a significant difference between the stable process period with low defect rate and the unstable process period with high defect rate. We set the range of the stable value of the variable to determine whether the selected final variable actually has an effect on the defect rate improvement. In addition, we measured the effect of the defect rate improvement by adjusting the process set-point so that the sensor did not deviate from the stable value range in the 14 day process. Through this, we expect to be able to provide empirical guidelines to improve the defect rate by utilizing and analyzing the process sensor data generated in the manufacturing industry.

ICT 기술의 발전에 따라 제조 산업은 공정 상에서 생성되는 제조 데이터를 분석하여 효율을 높이고자 많은 노력을 하고 있다. 본 논문에서는 스마트 공장의 일환으로 의사결정나무 알고리즘(CHAID)을 이용한 데이터 마이닝 기반 제조공정을 제안한다. 약 5개월간 수집된 실제 제조 공정의 432개 센서 데이터를 활용하여 불량률이 낮은 안정적인 공정 기간과 불량률이 높은 불안정한 공정 기간 간에 유의미한 차이를 보이는 변수를 찾아냈다. 선정된 최종 변수가 불량률 개선에 실제로 효과가 있는지를 측정하기 위해 해당 변수의 안정 값 범위를 설정하여 14일 간 공정에서 해당 센서가 안정 값의 범위를 벗어나지 않도록 공정 설정 값을 조절했고, 불량률 개선의 효과를 측정하였다. 이를 통해 제조 산업에서 생성되는 공정 센서 데이터를 활용 및 분석하여 불량률을 개선할 수 있는 실증적인 가이드라인을 제시할 수 있을 것으로 기대한다.

Keywords

References

  1. 김수영, 송민강, "MI-NPS 디지털팩토리 방법론을 활용한 생산능력의 향상 및 최적 레이아웃 구축에 관한 연구 : 자동차 부품 Shaft 제조라인 적용 사례", 생산성논집, 제28권, 제1호, pp. 47-73, 2014.
  2. 김승민, 백준걸, "정준상관분석을 이용한 공정설비 상태에 영향을 미치는 변수 선택", 한국경영과학회 학술대회논문집, pp.3915-3921, 2015.
  3. 김주창, 정호일, 유현, 정경용, "스마트 공장에서 의사결정 모델을 이용한 순차 마이닝 기반 제조공정", 한국융합학회논문지, 제9권, 제3호, 2018.
  4. 노규성, 박상휘, "제조실행시스템에의 빅데이터 적용방안에 대한 탐색적 연구", Journal of Digital Convergence, 제12권, 제1호, pp.305-311, 2014. https://doi.org/10.14400/JDPM.2014.12.1.305
  5. 노선영, 서봉균, 이상완, 김준우, "스마트 팩토리 고도화를 위한 예측 분석 시스템 프레임웍설계", 한국통신학회 학술대회논문집, pp.791-792, 2017.
  6. 배재호, "롤 형상 필름 생산에서 두께평활도 개선을 위한 고정굴곡부 발현 모형 및 개선모델", 산업경영시스템학회지, 제38권, 제3호, pp.21-28, 2015. https://doi.org/10.11627/jkise.2015.38.3.21
  7. 서혁, 신종필, 강윤구, "국가 차원에서 챙겨야 할 군용 방탄복 산업의 현실태 및 정책 방향제안", 국방과 기술, 제423호, pp.62-75, 2014.
  8. 안동혁, "제조공정에서의 지속적 예지 분석을 위한 조건", 한국콘텐츠학회지, 제15권, 제3호, pp.21-26, 2017.
  9. 이준희, 김신령, 김영곤, "빅데이터 분석을 활용한 스마트 팩토리 이상탐지 및 보안 강화 시스템에 관한 연구", 한국통신학회 학술대회논문집, pp.347-348. 2017.
  10. 최종후, 서두성, "데이터마이닝 의사결정나무의 응용", 통계분석연구, 제4권, 제1호, pp.61-83, 1999.
  11. 한국섬유개발연구원, 2017, http://super.textopia.or.kr:8888/newsletter/170530/lib0101.pdf.
  12. 한국섬유산업연합회, 2016, http://www.kofoti.or.kr/bbs/data/1611_data_16.pdf.
  13. Choi, J. H., S. T. Han, H. C. Kang, E. S. Kim, M. K. Kim, and S. K. Lee, Data mining prediction and application. Seoul: SPSS academy, 2002.
  14. Gubbi, J., R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision, architectural elements, and future directions", Future Generation Computer Systems, Vol.29, No.7, pp.1645-1660, 2013. https://doi.org/10.1016/j.future.2013.01.010
  15. Jun, C., B. H. Kim, and J. Y. Lee, "A Big Data Analysis Platform based on the Manufacturing Specialized Library : A Case Study on Implementation of the Platform for Quality Problems", Journal of the Korean Institute of Industrial Engineers, Vol.43, No.5, pp.380-387, 2017. https://doi.org/10.7232/JKIIE.2017.43.5.380
  16. Kang, H. S., J. Y. Lee, S. Choi, H. Kim, J. H. Park, J. Y. Son, and S. D. Noh, "Smart manufacturing: Past research, present findings, and future directions", International Journal of Precision Engineering and Manufacturing-Green Technology, Vol.3, No.1, pp.111-128, 2016. https://doi.org/10.1007/s40684-016-0015-5
  17. Kass, G. V., "An exploratory technique for investigating large quantities of categorical data", Applied Statistics, pp.119-127, 1980.
  18. Lasi, H., P. Fettke, H. G. Kemper, T. Feld, and M. Hoffmann, "Industry 4.0", Business & Information Systems Engineering, Vol.6, No.4, pp.239-242, 2014. https://doi.org/10.1007/s12599-014-0334-4
  19. Lee, J., "Smart factory systems", Informatik-Spektrum, Vol.38, No.3, pp.230-235, 2015. https://doi.org/10.1007/s00287-015-0891-z
  20. Lee, M. K., S. B. Bae, J. K. Park, and S. G. Lee, "The Development of High Performance Nano-composites with Carbon Nanotube", Textile Coloration and Finishing, Vol.26, No.2, pp.71-78, 2014. https://doi.org/10.5764/TCF.2014.26.2.71
  21. Schlechtendahl, J., M. Keinert, F. Kretschmer, A. Lechler, and A. Verl, "Making existing production systems Industry 4.0-ready", Production Engineering, Vol.9, No.1, pp.143-148, 2015. https://doi.org/10.1007/s11740-014-0586-3
  22. Tanaka, K., K. Minoshima, T. Oya, and K. Komai, "Influences of stress waveform and wet environment on fatigue fracture behavior of aramid single fiber", Composites Science and Technology, Vol.64, No.10-11, pp.1531-1537, 2004. https://doi.org/10.1016/j.compscitech.2003.11.004
  23. Wang, S., J. Wan, D. Li, and C. Zhang, "Implementing smart factory of industrie 4.0: an outlook", International Journal of Distributed Sensor Networks, Vol.12, No.1, 2016.
  24. Yildirim, P., D. Birant, and T. Alpyildiz, "Data mining and machine learning in textile industry", Wiley Interdisciplinary Reviews : Data Mining and Knowledge Discovery, Vol.8, No.1, e1228, 2018. https://doi.org/10.1002/widm.1228
  25. Yin, S. and O. Kaynak, "Big data for modern industry : challenges and trends [point of view]", Proceedings of the IEEE, Vol.103, No.2, pp.143-146, 2015. https://doi.org/10.1109/JPROC.2015.2388958