DOI QR코드

DOI QR Code

Improved generalized cross correlation-phase transform based time delay estimation by frequency domain autocorrelation

주파수영역 자기상관에 의한 위상 변환 일반 상호 상관 시간 지연 추정기 성능 개선

  • Received : 2018.07.10
  • Accepted : 2018.09.17
  • Published : 2018.09.30

Abstract

There are several methods for estimating the time delay between incoming signals to two sensors. Among them, the GCC-PHAT (Generalized Cross Correlation-Phase Transform) method, which estimates the relative delay from the signal whitening and the cross-correlation between the different signal inputs to the two sensors, is a traditionally well known method for achieving stable performance. In this paper, we have identified a part of GCC-PHAT that can improve the periodicity. Also, we apply the auto-correlation method that is widely used as a method to improve the periodicity. Comparing the proposed method with the GCC-PHAT method, we show that the proposed method improves the mean square error performance by 5 dB ~ 15 dB at the SNR above 0 dB for white Gaussian signal source and also show that the method improves the mean square error performance up to 15 dB at the SNR above 2 dB for the color signal source.

두 개 센서에 도래하는 신호 간의 시간 지연을 추정 방법에는 여러 가지가 존재한다. 그중에서 두 센서에 입력되는 서로 다른 신호간의 상호 상관과 신호 백색화로부터 상대적인 지연을 추정하는 GCC-PHAT(Generalized Cross Correlation-Phase Transform) 방법은 안정적인 성능을 내는 전통적으로 유명한 방법이다. 본 논문에서는 GCC-PHAT의 연산 과정 중에서 주기성을 이용하여 잡음을 제거할 수 있는 부분을 파악하였다. 그리고 파악된 부분에 자기상관을 적용하였다. 제안한 방법을 기존의 방법과 비교하여, 백색 가우시안 신호원인 경우 신호 대 잡음비 0 dB 이상에서 평균 자승 추정 오차 5 dB ~ 15 dB까지의 향상이 있음을 보이고, 유색 신호원에서도 신호 대 잡음비 2 dB 이상에서 평균 자승 추정 오차가 성능 개선되어 15 dB까지의 성능 개선 효과가 있음을 보인다.

Keywords

References

  1. H. R. Park and J. H. Shin, "Eigen-analysis based super-resolution time delay estimation algorithms for spread spectrum signals" (in Korean), J. KICS, 38, 1013-1020 (2013).
  2. J. H. Shin, H. R. Park, and E. Chang, "An ESPRIT-based super-resolution time delay estimation algorithm for real-time locating systems" (in Korean), J. KICS, 38, 310-317 (2013).
  3. J. Lim, Y. Pyeon, and M. Cheong, "GCC-PHAT (generalized cross correlation - phase transform) based time delay estimation using BPD (basis pursuit denoising)" (in Korean), J. KICS, 42, 1857-1862, (2017). https://doi.org/10.7840/kics.2017.42.9.1857
  4. J. Huang, T. Supaongprapa, I. Terakura, F. Wang, N. Ohnishi, and N. Sugie, "A model based sound localization system and its application to robot navigation," Robotics and Autonomous Systems, 27, 199-209 (1999). https://doi.org/10.1016/S0921-8890(99)00002-0
  5. D. Barton and S. Sherman, Monopulse Principles and Techniques (Artech House, Boston, 2011), pp. 71-103.
  6. J. Choi, J. Lee, S. Jeong, K. Kwak, S. Chi, and M. Hahn "Multimodal sound source localization for intelligent service robot," Proc. of International Conference on Ubiquitous Robots and Ambient Intelligence, 105-105 (2006).
  7. C. H. Knapp and G. C. Carter, "The generalized correlation method for estimation of time delay," IEEE Trans. Acoustic. Speech Signal Processing, 24, 320-327 (1976). https://doi.org/10.1109/TASSP.1976.1162830
  8. M. Brandstein and D. Ward, Microphone Arrays: Signal Processing Techniques and Applications (Springer-Verlag, New York, 2001), pp. 157-180.
  9. M. Brandstein and H. Silverman, "A practical methodology for speech source localization with microphone arrays," Comput., Speech Lng., 11, 91-126 (1997). https://doi.org/10.1006/csla.1996.0024
  10. S. Mitra, Digital Signal Processing: A Computer-Based Approach 2nd Edt. (McGraw-Hill, Seaol, 2001), pp. 92-118.