# 주파수영역 자기상관에 의한 위상 변환 일반 상호 상관 시간 지연 추정기 성능 개선

pISSN: 1225-4428 elSSN: 2287-3775

## Improved generalized cross correlation-phase transform based time delay estimation by frequency domain autocorrelation

임준석.<sup>†</sup> 정명준.<sup>2</sup> 김성일<sup>2</sup>

(Jun-Seok Lim, 1† Myoung Jun Cheong, 2 and Seongil Kim<sup>2</sup>)

<sup>1</sup>세종대학교 전자정보통신공학과, <sup>2</sup>국방과학연구소 (Received July 10, 2018; revised July 31, 2018; accepted September 17, 2018)

초 록: 두 개 센서에 도래하는 신호 간의 시간 지연을 추정 방법에는 여러 가지가 존재한다. 그중에서 두 센서에 입력 되는 서로 다른 신호간의 상호 상관과 신호 백색화로부터 상대적인 지연을 추정하는 GCC-PHAT(Generalized Cross Correlation-Phase Transform) 방법은 안정적인 성능을 내는 전통적으로 유명한 방법이다. 본 논문에서는 GCC-PHAT 의 연산 과정 중에서 주기성을 이용하여 잡음을 제거할 수 있는 부분을 파악하였다. 그리고 파악된 부분에 자기상관을 적용하였다. 제안한 방법을 기존의 방법과 비교하여, 백색 가우시안 신호원인 경우 신호 대 잡음비 0 dB 이상에서 평균 자승 추정 오차 5 dB ~ 15 dB까지의 향상이 있음을 보이고, 유색 신호원에서도 신호 대 잡음비 2 dB 이상에서 평균 자승 추정 오차가 성능 개선되어 15 dB까지의 성능 개선 효과가 있음을 보인다.

핵심용어: 시간 지연 추정, 위상 변환 일반 상호 상관기, 자기 상관, 방위 추정

**ABSTRACT:** There are several methods for estimating the time delay between incoming signals to two sensors. Among them, the GCC-PHAT (Generalized Cross Correlation-Phase Transform) method, which estimates the relative delay from the signal whitening and the cross-correlation between the different signal inputs to the two sensors, is a traditionally well known method for achieving stable performance. In this paper, we have identified a part of GCC-PHAT that can improve the periodicity. Also, we apply the auto-correlation method that is widely used as a method to improve the periodicity. Comparing the proposed method with the GCC-PHAT method, we show that the proposed method improves the mean square error performance by 5 dB  $\sim$  15 dB at the SNR above 0 dB for white Gaussian signal source and also show that the method improves the mean square error performance up to 15 dB at the SNR above 2 dB for the color signal source.

Keywords: Time delay estimation, GCC-PHAT (Generalized Cross Correlation-Phase Transform), Auto-correlation, Bearing estimation

**PACS** numbers: 43.60.Jn, 43.30.Wi

(Tel: 82-2-3408-3299, Fax: 82-2-3408-4329)

### 1. 서 론

두 개의 수신 신호 간의 시간 지연 추정은 소나 같 은 수중 음향 신호처리 분야뿐만 아니라 여러 가지 통신 및 음성 처리 시스템 등에서 주요 신호원의 위

†Corresponding author: Jun-Seok Lim (jslim@sejong.ac.kr) Department of Electrical Engineering, Sejong University, 209, Neungdong-ro, Guang-jin-gu, Seoul 05006, Republic of Korea

지능형 서비스 로봇 에서도 로봇이 공공장소나 가정 에서 주위 상황을 인지하고 판단하여 주의집중을 수 행할 수 있게 하기 위하여 시간 지연 추정 기술이 응 용되고 있다.[4]

> 현재 음원 추적 기술은 시간영역 및 주파수영역에 서 연구가 많이 진행되고 있다. 대표적으로 널리 사

> 치 파악을 위한 수단으로 사용하고 있다.[1-3] 그밖에

용되는 방법에는 강도차이를 이용한 방법, [5] GCC-PHAT (Generalized Cross Correlation-Phase Transform)를 비롯한 TDOA(Time Difference of Arrival) 방법 [6.7] 및 빔포밍 (beam-forming) 방법 [8] 등이 있다. 신호 강도 차이를 비교하는 방법의 경우 비교적 신호 대 잡음비가 좋은 경우에 좋은 결과가 나오는 경향이 있고, [5] 빔포밍을 이용하는 경우는 정확한 추정을 위해서 매우 좁은 빔폭을 갖는 빔형성이 필요하여 사용하는 배열의 크기가 커야할 경우가 생긴다. [2] 반면에 TDOA을 이용한 방법은 필요 센서 수도 상대적으로 적고, 계산도 간단한데 비해서, 비교적 정확성이 좋아가장 널리쓰이고 있고 있다. 그중에서 GCC-PHAT은 상관도를 이용하는 TDOA중에서 잡음이나 반향환경에서 좋은 특성을 보이고 있다. [9]

본 논문에서는 GCC-PHAT보다 더 향상된 추정 성능을 갖는 수정된 알고리즘을 제안한다. 향상된 성능을 위해서 GCC-PHAT내부에서 주기성을 띠는 부분을 파악하고 이 주기성이 시간 지연과 밀접한 관계가 있음도 파악하였다. 그리고 그 주기성을 유지하면서 부가된 잡음을 줄이는 방법의 하나로 자기상관을 취하도록 하였다. 그리고 시뮬레이션을 통해서 음원이 백색 신호원인 경우와 음원이 유색 신호원일 때 신호 대 잡음비를 달리하면서 시간 지연 추정 성능을 비교하였다.

## 비. 상호 상관 기반 시간 지연 신호 추정 기법 요약

#### 2.1. 시간 지연 신호의 수치 모델링

전통적인 시간지연추정 문제에 많이 쓰이는 간단한 신호 모델은 다음과 같다. 두 수신 채널에서 각각수신된 신호를  $x_i(k)$ , i=1,2,라한다면, 그 신호의 수치모델은 다음과 같다.

$$x_i(k) = \alpha_i s(k - \tau_i) + n_i(k), \tag{1}$$

여기서  $\alpha$ 는 원 신호, s(k),가 i번째 채널에 도달할 때의 감쇠 계수이고,  $\tau$ 는 원 신호가 i번째 채널에 도달할 때까지의 전파시간이다. 또 n(k)는 i번째 채널에

부가된 잡음이다. 이 모델에서 s(k), n(k)는 영 평균이고, 상호상관이 없고, 시간에 따라 통계적 성질이 변하지 않는 가우시안 신호이다. 두 채널간의 상대적인 시간 지연은,  $\hat{\tau}=\tau_{12}=\tau_1-\tau_2$ 이다.

#### 2.2. GCC-PHAT 기반 시간 지연 추정 방법<sup>[7]</sup>

GCC-PHAT는 백색화 가중치를 사용하는 상호상 관 방법이다. 주파수 영역에서 두 센서의 신호들의 상호 상관을 구한 후에 백색화 가중치를 곱하는 과정을 더하여 신호의 스펙트럼의 영향을 배제하는 효과를 갖는다. GCC-PHAT 기반의 시간 지연 추정 과정을 Fig. 1에 나타내었다.

Fig.1의 GCC-PHAT 방법을 간략히 기술하면 다음 과 같다. 두 개의 마이크에서 받은 신호  $x_1(k)$ 과  $x_2(k)$ 사이의 상호상관도는 다음 식에 의해 얻어진다.

$$R_{X_1X_2}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} W(\omega) X_1(\omega) X_2^*(\omega) e^{i\omega\tau}, \qquad (2)$$

여기서  $X_i(\omega)$ 는  $x_i(k)$  를 주파수 변환한 신호이다. 또  $W(\omega)$ 는 주파수축에서 구한 가중 함수로써  $X_i(\omega)X^*_2(\omega)$ 의 역수에 해당한다. [7] 이 가중 함수를 PHAT(phase transform) 가중함수 [8] 이라고 부른다. PHAT은 시간 지연을 추정함에 있어서 각주파수의 상대적인 중요 성을 결정하는 주파수에 종속된 가중치 된 함수이 며, 식은 다음과 같이 표현된다.

$$W(\omega) = \frac{1}{\left| X_1(\omega) X_2^*(\omega) \right|}.$$
 (3)

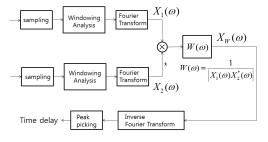



Fig. 1. Diagram of GCC-PHAT.

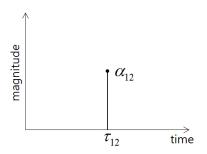



Fig. 2. Ideal cross-correlation result between two delayed received signals.

위와 같은 가중치를 곱한 후에는 신호의 지연 정보가들어 있는 위상만 남고 크기는 언제나 1로써 일정하게 유지된다. 일종의 백색화가 일어난다. 따라서 좀 더 충실한 시간 지연 정보 추정이 가능해진다. Eq. (2)를 통해서 구해진  $R_{xix}(\tau)$ 를 통하여 두 센서 사이의 최종적인 지연 시간은 다음 식과 같이 구해질수 있다.

$$\hat{\tau}$$
= arg max  $R_{X,X}(\tau)$ . (4)

Fig. 2는 이상적인 경우에 상호 상관을 그림으로 나타낸다. 가로축의  $\tau_{12}$ 는 지연시간을 나타내며 세로축은  $\alpha_{12}$ 는 지연 시간에서의  $R_{x1x2}(\tau)$ 의 값을 나타낸다. 센서 사이의 지연시간은  $R_{x1x2}(\tau)$ 값이 최대를 나타내는 가로축의 값이다.

## III. 주파수 영역 자기 상관을 이용한 GCC-PHAT 개선

Fig. 1에서  $\mathbf{X}_{\mathrm{W}}(\omega) = \mathrm{W}(\omega)\mathrm{X}_{1}(\omega)\mathrm{X}_{2}^{*}(\omega)$ 라고 할 때 이  $\mathbf{X}_{\mathrm{W}}(\omega)$ 의 역 푸리에 변환으로부터 얻은 시간 지 연 값이 Fig. 2와 같이 임펄스성 신호로 표현된다면  $\mathbf{X}_{\mathrm{W}}(\omega)$ 은 다음 식과 같음을 알 수 있다.

$$X_{W}(\omega) = e^{-j\omega\tau_{12}} = \cos(\omega\tau_{12}) - j\sin(\omega\tau_{12}).$$

$$= \cos(2\pi\tau_{12}f) - j\sin(2\pi\tau_{12}f)$$
(5)

위 식을 주파수 축과 시간축의 의미를 바꿔서 재해석 해본다면 f 영역에서 주파수  $\tau_{12}$ 인 주기 신호로 재해석할 수 있다. 이 경우 Fig. 2와 같은 결과는 Eq.

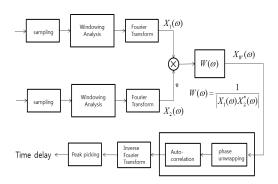



Fig. 3. Diagram of the proposed algorithm.

(5)의 신호를 역푸리에 변환하여 얻는 결과 값으로 해석 할 수 있다. 그러므로 실제 신호를 다룰 때  $\mathbf{X}_{\mathrm{W}}(\omega)$ 에 잡음이 부가되는 경우를 생각해 볼 때 부가된 잡음이 주기성이 없는 백색잡음이라면 Fig. 3 하단에 추가된 작은 네모 안에서와 같이  $\mathbf{X}_{\mathrm{W}}(\omega)$ 의 자기 상관을 구함으로써 주기성을 살리면서 잡음의 영향은 줄일 수 있다<sup>[10]</sup>.

$$R_{XX}(p) = \frac{1}{N} \sum_{\omega=0}^{N-1} X_{W}(\omega + p) X_{W}(\omega)^{*},$$
 (6)

여기서 주파수(ω)가 N개의 샘플로 이루어져있다고 가정한다. 그리고 이때에 FFT(Fast Fourier Transform) 를 써서 디지털 푸리에 변환하는 경우를 대비하여 위상을 unwrapping<sup>[10]</sup>하는 과정이 필요할 수 있다. 이 런 추가된 자기 상관 이후에는 Fig. 3과 같이 일반 GCC-PHAT처럼 역 푸리에 변환을 취한다. 위에 언급 한 두 과정을 더한 새로운 GCC-PHAT를 그림으로 나 타내면 다음 그림과 같다. 그리고 이후 서술의 편이 를 위해서 제안된 알고리즘을 AC-GCC-PHAT(Autocorrelation GCC-PHAT)라고 한다.

#### IV. 시뮬레이션

모의실험을 위해서 두 수신 채널을 위한 신호 열을 두 종류로 발생시킨다.

첫 번째 비교실험을 위한 신호발생을 위해서 첫 번째 채널 신호 $x_1(k)$ 은 백색 가우시안 불규칙 신호로 발생 시켰다. 두 번째 채널 신호는  $x_1(k)$ 과 10 샘플 뒤 진 신호와 1 샘플 뒤진 신호로 모델 하였다. 즉,  $x_2(k)$ =

 $x_1(k-10)$  과  $x_2(k) = x_1(k-1)$ 이다. 각 신호  $x_1(k)$ 과  $x_2(k)$ 에는 두 백색 가우시안 잡음,  $n_1(k)$ 과  $n_2(k)$ 가 각각 부가되었다. 이들 부가 잡음들은 서로 상관관계가 없도록 하였다. 그리고 신호 대 잡음비는 -10 dB부터 10 dB까지로 변화시켰다.

두 번째 비교실험을 위한 신호 열은 1차 AR과정인 신호로써, s(k) = 0.7s(k-1) + w(k), 인 관계식을 만족시키는 것으로 사용하였다. 이로써 음원이 유색 신호원의 성질을 갖도록 하였다. 나머지 스펙은 첫 번째비교 실험 때와 같도록 하였다. 그리고 신호 대 잡음비는 0 dB부터 10 dB까지로 변화 시켰다.

각 각의 비교 실험에서 제안한 AC-GCC-PHAT 방법과 함께 GCC-PHAT방법<sup>[7]</sup>을 동등하게 비교하였다. 두 방법을 각 신호 대 잡음비에 대해서 100회씩

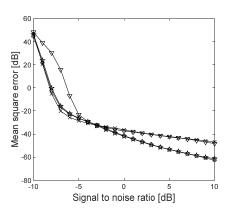



Fig. 4. Performance comparison in case of white gaussian signal source ( $-\times$ —: GCC in 10 step delay,  $-\bigcirc$ —: proposed algorithm in 10 step delay,  $-\bigcirc$ —: GCC in 1 step delay,  $-\bigcirc$ —: proposed algorithm in 1 step delay).

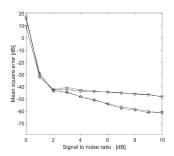



Fig. 5. Performance comparison in case of colored signal source ( $-\times$ : GCC in 10 step delay,  $-\sim$ : proposed algorithm in 10 step delay,  $-\nabla$ : GCC in 1 step delay,  $-\diamondsuit$ : proposed algorithm in 1 step delay).

반복 시행하여 결과를 얻었다. 추정 성능 비교를 위해서 참 지연 값과 추정 지연 값 사이의 차이를 지연시간 추정 오차라고 하고, 이 지연시간 추정의 평균자승 오차(mean square error)를 각 신호 대 잡음비에대해서 그래프로 그렸다.

Fig. 4는 첫 번째 실험의 결과를 비교한 그림이다. Fig. 4로 볼 때 백색 광대역 신호원에 대해 시간 지연에 상관없이 약 -4 dB 이상에서부터 향상된 성능을 보인다. 추정 오차 향상 정도는 신호 대 잡음비 0 dB에서 PHAT-GCC방법에 비해서 5 dB 향상되었고, 10 dB에서 약 15 dB 정도의 성능 개선을 나타내고 있음을 알 수 있다.

Fig. 5는 두 번째 실험의 결과를 비교한 그림이다. Fig. 5로 볼 때 유색 신호원에 대해서도 시간 지연에 상관 없이 2 dB 이상에서 향상된 성능을 보인다. 추정 오차 향상 정도는 신호 대 잡음비 2 dB에서 PHAT-GCC방법에 비해서 2 dB정도 향상된 것을 시작으로 해서 신호 대 잡음비 5 dB에서는 PHAT-GCC 방법에 비해서 7 dB정도 향상되었고, 10 dB에서 PHAT-GCC방법에 비해서 15 dB 정도 성능 개선을 나타내고 있음을 알수 있다.

앞의 두 실험을 통해서 제안한 방법이 기존의 GCC-PHAT 방법에 비해서 상대적으로 우수한 시간 지연 추정 결과를 얻을 수 있음을 알 수 있다.

#### V. 결 론

두 센서에 수신된 신호가 시간 지연을 추정하기 위한 GCC-PHAT방법의 구성 단계 중에서 시간 지연 과 관련 있으면서 주기성을 띄는 부분을 개선하여 새로운 시간 지연 추정법을 제안하였다. 그 결과 제 안한 시간 지연 추정법이 기존의 GCC-PHAT 기반시 간 지연 추정 방법에 비해 우수한 추정 결과를 산출 함을 알 수 있었다.

#### 감사의 글

본 연구는 국방과학연구소의 지원을 받아 수행되었음(UD160015DD). 본 논문은 출원 심사 중인 특허 (10-2018-0070988)의 내용을 포함하고 있음.

#### References

- H. R. Park and J. H. Shin, "Eigen-analysis based super-resolution time delay estimation algorithms for spread spectrum signals" (in Korean), J. KICS, 38, 1013-1020 (2013).
- J. H. Shin, H. R. Park, and E. Chang, "An ESPRIT-based super-resolution time delay estimation algorithm for real-time locating systems" (in Korean), J. KICS, 38, 310-317 (2013).
- J. Lim, Y. Pyeon, and M. Cheong, "GCC-PHAT (generalized cross correlation - phase transform) based time delay estimation using BPD (basis pursuit denoising)" (in Korean), J. KICS, 42, 1857-1862, (2017).
- J. Huang, T. Supaongprapa, I. Terakura, F. Wang, N. Ohnishi, and N. Sugie, "A model based sound localization system and its application to robot navigation," Robotics and Autonomous Systems, 27, 199-209 (1999).
- D. Barton and S. Sherman, Monopulse Principles and Techniques (Artech House, Boston, 2011), pp. 71-103.
- J. Choi, J. Lee, S. Jeong, K. Kwak, S. Chi, and M. Hahn "Multimodal sound source localization for intelligent service robot," Proc. of International Conference on Ubiquitous Robots and Ambient Intelligence, 105-105 (2006).
- C. H. Knapp and G. C. Carter, "The generalized correlation method for estimation of time delay," IEEE Trans. Acoustic. Speech Signal Processing, 24, 320-327 (1976).
- 8. M. Brandstein and D. Ward, *Microphone Arrays: Signal Processing Techniques and Applications* (Springer-Verlag, New York, 2001), pp. 157-180.
- M. Brandstein and H. Silverman, "A practical methodology for speech source localization with microphone arrays," Comput., Speech Lng., 11, 91-126 (1997).
- S. Mitra, Digital Signal Processing: A Computer-Based Approach 2<sup>nd</sup> Edt. (McGraw-Hill, Seaol, 2001), pp. 92-118.

#### ▮ 저자 약력

▶ 임 준 석 (Jun-Seok Lim)



- 1986년: 서울대학교 전자공학과 학사 졸 업.
- 1988년: 서울대학교 전자공학과 석사 졸 업.
- 1996년: 서울대학교 전자공학과 박사 졸 어

1996년 7월~1997년 10월: LG종합기술원 현재: 세종대학교 전자정보통신공학과 교수

#### ▶ 정 명 준 (MyoungJun Cheong)



2004년 2월: 고려대학교 전기전자전파공학과 학사

2006년 2월: 서울대학교 전기컴퓨터공학 과 석사

2006년 1월 ~ 현재: 국방과학연구소 선임 연구원

<관심 분야> 신호 처리

#### ▶ 김 성 일 (Seongil Kim)



1986년: 서울대학교 해양학과 학사 1988년: 서울대학교 대학원 해양학과 석사 2002년: Univ. of California, San Diego 해양 학과 박사

1990년 ~ 현재: 국방과학연구소수석연구원 <관심분이수 수중음향 신호처리