DOI QR코드

DOI QR Code

Numerical investigation into cavitation flow noise of hydrofoil using quadrupole-corrected Ffowcs Williams and Hawkings equation

사중극자 보정 Ffowcs Williams and Hawkings 방정식을 이용한 수중 익형 공동 유동소음에 대한 수치적 고찰

  • Received : 2018.07.16
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

In most industry fields concerning external flow noise problems, the hybrid computational aeroacoustic techniques based on the FW-H (Ffowcs Williams and Hawkings) equation are widely used for its numerical efficiency. However, when the surface integral form of FW-H equation is used without volume quadrupole sources, it is known to generate significant non-physical noise in a certain case. Especially, in the case of a flow in which the tip vortex cavitation is formed in the distant downstream direction such as flow driven by an underwater propeller, the accuracy in noise prediction becomes poor unless it is not properly modelled. Therefore, in this study, the nonphysical acoustic waves caused by the surface integral form of FW-H equation is reduced by adding the quadrupole correction term. First, to verify the accuracy of the in-house code of FW-H equation, the noise by an axial fan used in the outdoor unit of air conditioner was calculated and compared with the results of ANSYS Fluent. In order to verify the effects of the quadrupole correction term, the noise prediction for isentropic vortex convection is performed and it is confirmed that the error is reduced by the quadrupole correction term. Finally, the noise prediction is performed for the flow field generated by the Clark-Y hydrofoil in underwater. It is confirmed that the error caused by the cavitation passing through the integral surface can be reduced by the quadrupole correction term.

외부 유동소음 문제를 다루는 대부분의 산업현장에서 FW-H(Ffowcs Williams and Hawkings) 방정식을 이용한 복합전산공력음향 기법이 수치적인 효율성으로 인하여 널리 사용되고 있다. 그러나 사중극자항을 무시한 면적분 형태의 FW-H 방정식을 사용할 때 경우에 따라 무시할 수 없는 비물리적인 소음이 발생한다고 알려져 있다. 특히, 수중 프로펠러와 같이 날개 끝 와류 공동(tip vortex cavitation)이 하류방향으로 길게 형성되는 유동에 대해서는 적절하게 모델링하지 않으면 소음 예측의 정확도가 떨어지게 된다. 따라서 본 연구에서는 사중극자 보정항을 추가하여 적분면에서 FW-H 방정식으로부터 발생하는 비물리적인 음향을 저감시키고자 하였다. 먼저 FW-H 방정식에 기초하여 개발한 내부 예측코드의 정확성을 확인하기 위하여 에어컨 실외기에 사용되는 축류팬을 대상으로 검증을 수행하였으며, ANSYS Fluent의 결과와 비교하여 잘 일치하는 것을 확인하였다. 사중극자 보정항의 효과를 확인하기 위하여 등엔트로피 와류 전파에 대한 소음 해석을 수행하였으며, 사중극자 보정항에 의한 오차의 저감 효과가 발생하는 것을 확인하였다. 마지막으로 Clark-Y 수중익형에서 발생하는 공동 유동장을 대상으로 소음 해석을 수행하였으며, 공동이적분면을 통과할 때 발생하는 오차를 사중극자 보정항을 이용하여 저감할 수 있다는 것을 확인하였다.

Keywords

References

  1. S. Kim and C. Cheong, "Development of low-noise drag-type vertical wind turbines," Renewable Energy, 79, 199-208 (2015). https://doi.org/10.1016/j.renene.2014.09.047
  2. S. Kim, C. Cheong, and W. G. Park, "Numerical investigation on cavitation flow of hydrofoil and its flow noise with emphasis on turbulence models," AIP Advances, 7 (2017).
  3. S. Heo, D. Kim, and C. Cheong, "Analysis of relative contributions of tonal noise sources in volute tongue region of a centrifugal fan," (in Korean), J. Acoust. Soc. Kr. 33, 40-47 (2014). https://doi.org/10.7776/ASK.2014.33.1.040
  4. B. A. Singer, D. P. Lockard, and G. M. Lilley, "Hybrid acoustic predictions," Computers and Mathematics with Applications 46, 647-669 (2003). https://doi.org/10.1016/S0898-1221(03)90023-X
  5. L. V. Lopes, D. D. Boyd Jr, D. M. Nark, and K. E. Wiedemann, "Identification of spurious signals from permeable Ffowcs Williams and Hawkings surfaces," In 73rd AHS Annual Forum, 1-17 (2017).
  6. K. S. Brentner, "Prediction of helicopter rotor discrete frequency noise: a computer program incorporating realistic blade motions and advanced acoustic formulation," NASA TM 87721, October (1986).
  7. F. Farassat and M. K. Myers, "Extension of Kirchhoff's formula to radiation from moving surfaces," J. Sound and Vibration, 123, 451-460 (1988). https://doi.org/10.1016/S0022-460X(88)80162-7
  8. P. D. Francescantonio, "A new Kirchhoff formulation for transonic rotor noise," 22nd European Rotorcraft Forum, Brighton, UK, 1-8 (1996).
  9. D. Lockard and J. Casper, "Permeable surface corrections for Ffowcs Williams and Hawkings integrals," In 11th AIAA/CEAS Aeroacoustics Conference, 1-13 (2005).
  10. M. Wang, S. K. Lele, and P. Moin, "Computation of quadrupole noise using acoustic analogy," AIAA Journal, 34, 2247-2254 (1996). https://doi.org/10.2514/3.13387
  11. T. Ikeda, S. Enomoto, K. Yamamoto, and K. Amemiya, "Quadrupole effects in the Ffowcs Williams-Hawkings equation using permeable control surface," In 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), 1-13 (2012).
  12. T. Ikeda, K. Yamamoto, and K. Amemiya, "The frequency-domain formulations of the quadrupole correction for the Ffowcs Williams-Hawkings integration", In 22nd AIAA/CEAS Aeroacoustics Conference, 1-13 (2016).
  13. T. Ikeda, S. Enomoto, K. Yamamoto, and K. Amemiya, "Quadrupole corrections for the permeable-surface Ffowcs Williams-Hawkings Equation," AIAA Journal, 2307-2320 (2017).
  14. F. Farassat, "Derivation of formulations 1 and 1A of farassat," NASA/TM-2007-214853 (2007).
  15. S. Ryu, S. Kim, C. Cheong, J. Kim, B. Park, and S. Park, "Optimization of flow performance by designing orifice shape of outdoor unit of air-conditioner," (in Korean), J. Acoust. Soc. Kr. 36, 371-377 (2017).
  16. H. C. Yee, N. D. Sandham, and M. J. Djomehri, "Low-dissipative high-order shock-capturing methods using characteristic-based filters," J. computational physics, 150, 199-238 (1999). https://doi.org/10.1006/jcph.1998.6177
  17. G. Ku, C. Cheong, S. Kim, C. T. Ha, and W. Park, "Numerical study on cavitation flow and noise in the flow around a Clark-Y Hydrofoil," Trans. Korean Soc. Mech. Eng. B, 41, 87-94 (2017).