DOI QR코드

DOI QR Code

다양한 다당류를 분해하는 세균 Microbulbifer agarilyticus GP101의 완전한 유전체 서열

Complete genome sequence of Microbulbifer agarilyticus GP101 possessing genes coding for diverse polysaccharide-degrading enzymes

  • 투고 : 2018.07.17
  • 심사 : 2018.08.01
  • 발행 : 2018.09.30

초록

Microbulbifer agarilyticus GP101은 소라(Turbo cornutus)의 내장에서 분리되었으며 해조류 유래 다당류인 한천, 알긴산, ${\kappa}$-카라기난을 분해하는 특징이 있다. GP101 균주의 유전체는 4,255,625 bp 크기로 3,458개의 코딩 서열을 포함하며 55.4%의 GC 함량을 가진다. BLASTP 분석 결과 7개의 agarase, 5개의 alginate lyase, 10개의 glucanase, 4개의 chitinase, 2개의 xylanases, 1개의 ${\kappa}$-carrageenase, 1개의 laminarinase의 존재를 확인하였다. M. agarilyticus GP101의 유전체 정보는 다당류의 생물전환 공정에 이용할 수 있는 유전 정보를 제공할 수 있을 것이다.

Microbulbifer agarilyticus GP101 was isolated from the gut of a marine invertebrate Turbo cornutus and capable of degrading polysaccharide such as agar, alginate, and ${\kappa}$-carrageenan constituting algal cell wall. To obtain genomic basis of polysaccharide-degrading activity, we sequenced genome of strain GP101. The genome consists of 4,255,625 bp, 3,458 coding sequences with 55.4% G + C contents. BLASTP search revealed the presence of seven agarases, five alginate lyases, ten glucanases, four chitinases, two xylanases, one ${\kappa}$-carrageenase, and one laminarinase. The genomic data of strain GP101 will provide potential uses in the bioconversion process of diverse polysaccharide into bioenergy and biochemicals.

키워드

참고문헌

  1. Fu XT and Kim SM. 2010. Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 8, 200-218. https://doi.org/10.3390/md8010200
  2. Lee SB, Cho SJ, Kim JA, Lee SY, Kim SM, and Lim HS. 2014. Metabolic pathway of 3,6-anhydro-L-galactose in agar-degrading microorganisms. Biotechnol. Bioprocess. Eng. 19, 866-878. https://doi.org/10.1007/s12257-014-0622-3
  3. Lee YS and Choi YL. 2016. Complete genome sequence of cold-adapted enzyme producing Microbulbifer thermotolerans DAU221. J. Biotechnol. 229, 31-32. https://doi.org/10.1016/j.jbiotec.2016.05.002
  4. Lee SB, Kim JA, and Lim HS. 2016. Metabolic pathway of 3,6-anhydro-D-galactose in carrageenan-degrading microorganisms. Appl. Microbiol. Biotechnol. 100, 4109-4121. https://doi.org/10.1007/s00253-016-7346-6
  5. Michel G and Czjek M. 2013. Polysaccharide-degrading enzymes from marine bacteria, pp. 429-464. In Trincone, A. (ed.), Marine enzymes for biocatalysis: Sources, biocatalytic characteristics and bioprocesses of marine enzymes, Ed. Elsevier Science, UK.
  6. Ohta Y, Hatada Y, Nogi Y, Miyazaki M, Li Z, Akita M, Hidaka Y, Goda S, Ito S, and Horikoshi K. 2004. Enzymatic properties and nucleotide and amino acid sequences of a thermostable betaagarase from a novel species of deep-sea Microbulbifer. Appl. Microbiol. Biotechnol. 64, 505-514. https://doi.org/10.1007/s00253-004-1573-y
  7. Parte AC. 2018. LPSN - List of prokaryotic names with standing in nomenclature (bacterio.net), 20 years on. Int. J. Syst. Evol. Microbiol. 68, 1825-1829. https://doi.org/10.1099/ijsem.0.002786
  8. Swift SM, Hudgens JW, Heselpoth RD, Bales PM, and Nelson DC. 2014. Characterization of AlgMsp, an alginate lyase from Microbulbifer sp. 6532A. PLoS One 9, e112939. https://doi.org/10.1371/journal.pone.0112939
  9. Vijayaraghavan R and Rajendran S. 2012. Identification of a novel agarolytic gamma-proteobacterium Microbulbifer maritimus and characterization of its agarase. J. Basic Microbiol. 52, 705-712. https://doi.org/10.1002/jobm.201100315
  10. Zhu Y, Wu L, Chen Y, Ni H, Xiao A, and Cai H. 2016. Characterization of an extracellular biofunctional alginate lyase from marine Microbulbifer sp. ALW1 and antioxidant activity of enzymatic hydrolysates. Microbiol. Res. 182, 49-58. https://doi.org/10.1016/j.micres.2015.09.004