DOI QR코드

DOI QR Code

저온 민감성 바실러스 서브틸리스 돌연변이 균주에서 glycine betaine의 저온 내성에 미치는 영향에 대한 연구

Studies of cold resistant glycine betaine effect on cold sensitive Bacillus subtilis mutant strains

  • Kim, Do Hyung (Department of Life Science and Technology, Pai Chai University) ;
  • Lee, Sang Soo (Department of Life Science and Technology, Pai Chai University)
  • 투고 : 2018.06.04
  • 심사 : 2018.08.20
  • 발행 : 2018.09.30

초록

높은 염분 농도에서 glycine betaine은 Bacillus subtilis 안으로 유입되어 세포 생장이 지속될 수 있게 한다. 뿐만 아니라 최근 연구 결과에 따르면 저온에서도 glycine betaine이 세포 생장을 지속시키는 것으로 알려져 있다. 저온에서 Bacillus subtilis의 생장을 저해시키는 세포 대사 활동으로는 세포막 운송과 단백질 합성을 들 수 있다. 세포막 구조와 관련하여 저온에서 세포막 운송에 영향을 주는 유전자들로는 bkdR과 des가 있고, 단백질 합성 과정에서 RNA helicase 유전자인 ydbR과 yqfR들은 저온 민감성을 보인다. 따라서 Bacillus subtilis 저온 민감성 유전자 결손 세포들에 대한 glycine betaine의 효과를 조사하여 저온에서의 glycine betaine 생리적 기능에 대해 알아보고자 하였다. 이 결과 glycine betaine의 존재 유무에 따라 야생형 Bacillus subtilis와 ydbR과 yqfR 결손 균주의 저온생장에 큰 차이를 보였다($T_d$차이 190~686 min). 반면에 bkdR이나 des 결손균주의 경우에는 glycine betaine 존재 유무에 따라 차이를 보이지 않았다. Glycine betaine의 전구체인 choline으로 대치하여도 저온에서의 생장은 같은 결과를 보였다. Glycine betaine의 영향이 세포막 구조와 관련이 있는 유전자 bkdR과 des 결손균주에 미치는 영향이 적은 것을 알아보기 위해 세포막에 영향을 주는 세제의 효과를 조사하였다. Triton X-100과 N-lauryl sarcosine 세제에 의해 bkdR 결손 균주가 야생형에 비해 더 영향 받는 것을 확인하였고 이는 bkdR 결손이 저온에서 막 구조를 변형하여 glycine betaine의 투과에 영향을 미치는 것으로 보인다.

At high salt concentration, glycine betaine is transported into Bacillus subtilis and growing rate of the cell is not suppressed. Also according to recent studies, cell growth is maintained normal growth rate at low temperature. Low temperature results in a stress response of Bacillus subtilis that is characterized by strong repression of major metabolic activities such as translation machinery and membrane transport. In this regards, genes showing cold sensitive phenotype are cold-induced DEAD box RNA helicases (ydbR, yqfR) and fatty acid desaturases (bkdR, des). Therefore to understand the effect of glycine betaine on cold growth of Bacillus subtilis, we investigated the effect of glycine betaine on growth rate of these deletion mutants showing cold sensitive phenotype. Glycine betaine strongly stimulated growth of wild type Bacillus subtilis JH642 and deletion mutants of ydbR and yqfR at $20^{\circ}C$ (190~686 min $T_d$ difference). On the other hands, glycine betaine does not show growth promoting effects on deletion mutants of bkdR, and des at cold conditions. Same cold protectant growth results were shown with the precursor choline instead of glycine betaine. We investigated the effects of detergents on the cell membrane in bkdR and des deficient strains associated with cell membrane. It was identified that bkdR deficient strain shows retarded growth with detergent such as Triton X-100 or N-lauryl sarcosine compared with wild type cell. Thus, it is possible that deletion mutation of bkdR modifies membrane structure and effects on transport of glycine betaine.

키워드

참고문헌

  1. Ahyayauch H, Larijani B, Alonso A, and Goni FM. 2006. Detergent solubilization of phosphatidylcholine bilayers in the fluid state: influence of the acyl chain structure. Biochim. Biophys. Acta 1758, 190-196. https://doi.org/10.1016/j.bbamem.2006.01.016
  2. Altabe SG, Aguilar P, Caballero GM, and de Mendoza D. 2003. The Bacillus subtilis acyl lipid desaturase is a ${\Delta}5$ desaturase. J. Bacteriol. 185, 3228-3231. https://doi.org/10.1128/JB.185.10.3228-3231.2003
  3. Beckering CL, Steil L, Weber MHW, Volker U, and Marahiel MA. 2002. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J. Bacteriol. 184, 6395-6402. https://doi.org/10.1128/JB.184.22.6395-6402.2002
  4. Boch J, Kempf B, and Bremer E. 1994. Osmoregulation in Bacillus subtilis: synthesis of the osmoprotectant glycine betaine from exogenously provided choline. J. Bacteriol. 176, 5364-5371. https://doi.org/10.1128/jb.176.17.5364-5371.1994
  5. Boch J, Kempf B, Schmid R, and Bremer E. 1996. Synthesis of the osmoprotectant glycine betaine in Bacillus subtilis: characterization of the gbsAB genes. J. Bacteriol. 178, 5121-5129. https://doi.org/10.1128/jb.178.17.5121-5129.1996
  6. Bremer E. 2002. Adaptation to changing osmolarity, pp. 385-391. In Sonenshein AL, Hoch JA, and Losick R. (eds.), Bacillus subtilis and its closest relatives. ASM Press, Washington, DC, USA.
  7. Bremer E and Kramer R. 2000. Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria, pp. 79-97. In Storz G and Hengge-Aronis R. (eds.), Bacterial stress responses. ASM Press, Washington, DC, USA.
  8. Brigulla M, Hoffmann T, Krisp A, Volker A, Bremer E, and Volker U. 2003. Chill induction of the SigB-dependent general stress response in Bacillus subtilis and its contribution to low-temperature adaptation. J. Bacteriol. 185, 4305-4314. https://doi.org/10.1128/JB.185.15.4305-4314.2003
  9. Brill J, Hoffmann T, Bleisteiner M, and Bremer E. 2011a. Osmotically controlled synthesis of the compatible solute proline is critical for cellular defense of Bacillus subtilis against high osmolarity. J. Bacteriol. 193, 5335-5346. https://doi.org/10.1128/JB.05490-11
  10. Brill J, Hoffmann T, Putzer H, and Bremer E. 2011b. T-box-mediated control of the anabolic proline biosynthetic genes of Bacillus subtilis. Microbiology 157, 977-987. https://doi.org/10.1099/mic.0.047357-0
  11. Budde I, Steil L, Scharf C, Volker U, and Bremer E. 2006. Adaptation of Bacillus subtilis to growth at low temperature: a combined transcriptomic and proteomic appraisal. Microbiology 152, 831-853. https://doi.org/10.1099/mic.0.28530-0
  12. Chen TH and Murata N. 2011. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. Plant Cell Environ. 34, 1-20. https://doi.org/10.1111/j.1365-3040.2010.02232.x
  13. Cybulski LE, Albanesi D, Mansilla MC, Altabe S, Aguilar PS, and de Mendoza D. 2002. Mechanism of membrane fluidity optimization: isothermal control of the Bacillus subtilis acyl-lipid desaturase. Mol. Microbiol. 45, 379-388.
  14. Debarbouille M, Gardan R, Arnaud M, and Rapoport G. 1999. Role of BkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J. Bacteriol. 181, 2059-2066.
  15. Feller G and Gerday C. 2003. Psychrophilic enzymes: hot topics in cold adaptation. Nat. Rev. Microbiol. 1, 200-208. https://doi.org/10.1038/nrmicro773
  16. Hoffmann T and Bremer E. 2011. Protection of Bacillus subtilis against cold stress via compatible-solute acquisition. J. Bacteriol. 193, 1552-1562. https://doi.org/10.1128/JB.01319-10
  17. Holtmann G, Bakker EP, Uozumi N, and Bremer E. 2003. KtrAB and KtrCD: two $K^+$ uptake systems in Bacillus subtilis and their role in adaptation to hypertonicity. J. Bacteriol. 185, 1289-1298. https://doi.org/10.1128/JB.185.4.1289-1298.2003
  18. Holtmann G and Bremer E. 2004. Thermoprotection of Bacillus subtilis by exogenously provided glycine betaine and structurally related compatible solutes: involvement of Opu transporters. J. Bacteriol. 186, 1683-1693. https://doi.org/10.1128/JB.186.6.1683-1693.2004
  19. Hunger K, Beckering CL, Wiegeshoff F, Graumann PL, and Marahiel MA. 2006. Cold-induced putative DEAD-box RNA helicase CshA and CshB are essential for cold adaptation and interact with cold shock protein B in Bacillus sutilis. J. Bacteriol. 188, 240-248. https://doi.org/10.1128/JB.188.1.240-248.2006
  20. Kaan T, Homuth G, Mader U, Bandow J, and Schweder T. 2002. Genome-wide transcriptional profiling of the Bacillus subtilis cold-shock response. Microbiology 148, 3441-3455. https://doi.org/10.1099/00221287-148-11-3441
  21. Kappes RM, Kempf B, Kneip S, Boch J, Gade J, Meier-Wagner J, and Bremer E. 1999. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol. Microbiol. 32, 203-216. https://doi.org/10.1046/j.1365-2958.1999.01354.x
  22. Kempf B and Bremer E. 1998. Uptake and synthesis of compatible solutes as microbial stress responses to high osmolality environments. Arch. Microbiol. 170, 319-330. https://doi.org/10.1007/s002030050649
  23. Kim DH and Lee SS. 2018. Cold shock sensitive growth of Bacillus subtilis mutants deleted for genes involved in fatty acid synthesis. Korean J. Microbiol. 54, 9-17.
  24. Nau-Wagner G, Opper D, Rolbetzki A, Boch J, Kempf B, Hoffmann T, and Bremer E. 2012. Genetic control of osmoadaptive glycine betaine synthesis in Bacillus subtilis through the choline-sensing and glycine betaineresponsive GbsR repressor. J. Bacteriol. 194, 2703-2714. https://doi.org/10.1128/JB.06642-11
  25. Oh EH and Lee SS. 2010. Cold sensitive growth of deletion mutants of DEAD-box RNA helicase genes in Bacillus subtilis. Korean J. Microbiol. 46, 233-239.
  26. Rodrigues DF and Tiedje JM. 2008. Coping with our cold planet. Appl. Environ. Microbiol. 74, 1677-1686. https://doi.org/10.1128/AEM.02000-07
  27. Shivaji S and Prakash JS. 2010. How do bacteria sense and respond to low temperature? Arch. Microbiol. 192, 85-95. https://doi.org/10.1007/s00203-009-0539-y
  28. Strocchi M, Ferrer M, Timmis KN, and Golyshin PN. 2006. Low temperature-induced systems failure in Escherichia coli: insights from rescue by cold-adapted chaperones. Proteomics 6, 193-206. https://doi.org/10.1002/pmic.200500031
  29. Whatmore AM, Chudek JA, and Reed RH. 1990. The effects of osmotic up shock on the intracellular solute pools of Bacillus subtilis. J. Gen. Microbiol. 136, 2527-2535. https://doi.org/10.1099/00221287-136-12-2527
  30. Ziegler C, Bremer E, and Kramer R. 2010. The BCCT family of carriers: from physiology to crystal structure. Mol. Microbiol. 78, 13-34.