DOI QR코드

DOI QR Code

대두 septapeptide의 항염 효과 및 분자 기작 규명

Characterization of anti-inflammatory effect of soybean septapeptide and its molecular mechanism

  • Lewis, Kevin M. (Department of Chemistry, Washington state University) ;
  • Sattler, Steven A. (School of Molecular Biosciences, Washington state University) ;
  • Kang, ChulHee (Department of Chemistry, Washington state University) ;
  • Wu, Hong Min (College of Pharmacy, Seoul National University) ;
  • Kim, Sang Geon (College of Pharmacy, Seoul National University) ;
  • Kim, Han Bok (Department of Biotechnology, Hoseo University)
  • 투고 : 2018.06.29
  • 심사 : 2018.08.13
  • 발행 : 2018.09.30

초록

Nuclear factor kappa B ($NF{\kappa}B$)의 활성화는 염증을 일으킨다. 이 때, inducible nitric oxide synthase (iNOS)가 발현된다. 우리 선행 연구에 의하면 Bacillus licheniformis B1에 의해 제조된 발효대두에 있는 septapeptide (GVAWWMY)가 대식세포에서 iNOS mRNA 발현과 NO 생산을 억제하였다. 본 연구에서 septapeptide의 처리가 $I{\kappa}B{\alpha}$ ($NF{\kappa}B$ 억제 단백질)의 분해를 억제하여 LPS에 의해 유도되는 $NF{\kappa}B$의 활성화를 억제함을 확인했다. 분자 docking에 의해 septapeptide가 ${\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$)에 부착하여 $I{\kappa}B{\alpha}$의 인산화를 방해할 가능성이 있다. Septapeptide는 높은 친화도로(-8.7 kcal/Mol) $IKK{\beta}$의 kinase domain에 부착해서 kinase 활성에 크게 영향을 미칠 수 있다.

Activation of nuclear factor kappa B ($NF{\kappa}B$) leads to the inflammatory process. During this $NF{\kappa}B$-dependent inflammation process, inducible nitric oxide synthase (iNOS) are expressed in the inflammatory cells. Our previous data indicated that a specific septapeptide (GVAWWMY) from the soybean extract fermented by Bacillus licheniformis B1 inhibited iNOS mRNA expression and NO production in cultured macrophage cells. Our further experiments revealed that treatment of same septapeptide resulted in inhibition of LPS-induced $NF{\kappa}B$ activation by reversing degradation of $I{\kappa}B{\alpha}$, an inhibitory protein for $NF{\kappa}B$. The molecular docking indicated that the septapeptide binds to $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and thus it can inhibit phosphorylation of $I{\kappa}B{\alpha}$. Supporting this, the binding site for the septapeptide has the highest affinity (-8.7 kcal/mol) and the site was located at the kinase domain (KD) of $IKK{\beta}$, which can significantly affect the kinase activity of $IKK{\beta}$.

키워드

참고문헌

  1. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral, GJ, Grosse-Kunstleve RW, et al. 2010. Phenix: a comprehensive Python-based system for macromolecular structure resolution. Acta Cryst. D66, 213-221.
  2. Cramer P, Larson CJ, Verdine GL, and Muller CW. 1997. Structure of the human NF-${\kappa}B$ p52 homodimer-DNA complex at 2.1 ${\AA}$ resolution. EMBO J. 16, 7078-7090. https://doi.org/10.1093/emboj/16.23.7078
  3. Dolcet X, Llobet D, Pallares J, and Matias-Guiu X. 2005. NF-${\kappa}B$ in development and progression of human cancer. Virchows Arch. 446, 475-482. https://doi.org/10.1007/s00428-005-1264-9
  4. Emsley P, Lohkamp B, Scott WG, and Cowtan K. 2010. Features and development of coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486-501. https://doi.org/10.1107/S0907444910007493
  5. Ghosh S and Karin M. 2002. Missing pieces in the NF-${\kappa}B$ puzzle. Cell 109, S81-S96. https://doi.org/10.1016/S0092-8674(02)00703-1
  6. Hwang JS, Yoo HJ, Song HJ, Kim KK, Chun YJ, Matsui T, and Kim HB. 2011. Inflammation-related signaling pathways implicating $TGF{\beta}$ are revealed in the expression profiling of MCF cell treated with fermented soybean, Chungkookjang. Nutr. Cancer 63, 645-652. https://doi.org/10.1080/01635581.2011.551987
  7. Kelley LA, Mezulis S, Yates CM, Wass MN, and Sternberg MJ. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845-858. https://doi.org/10.1038/nprot.2015.053
  8. Lee JJ, Lee DS, and Kim HB. 1999. Fermentation patterns of Chungkookjang and Kanjang by Bacillus licheniformis B1. Korean J. Microbiol. 35, 296-301.
  9. Lee WH, Wu HM, Lee CG, Sung DI, Song HJ, Matsui T, Kim HB, and Kim SG. 2014. Specific oligopeptides in fermented soybean extract inhibit NF-${\kappa}B$-dependent iNOS and cytokine induction by Toll-like receptor ligands. J. Med. Food 17, 1239-1246. https://doi.org/10.1089/jmf.2013.3070
  10. Makarov SS. 2001. NF-kappaB in rheumatoid arthritis: a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res. 3, 200-206. https://doi.org/10.1186/ar300
  11. Mathes E, O'Dea EL, Hoffmann A, and Ghosh G. 2008. NF-${\kappa}B$ dictates the degradation pathway of $I{\kappa}B{\alpha}$. EMBO J. 27, 1357-1367. https://doi.org/10.1038/emboj.2008.73
  12. Matsui T, Yoo HJ, Hwang JS, Lee DS, and Kim HB. 2004. Isolation of angiotensin 1-converting enzyme inhibitory peptide from Chungkookjang. Korean J. Microbiol. 40, 355-358.
  13. Michael K. 1999. How $NF{\kappa}B$ is regulated: the role of the $I{\kappa}B$ kinase (IKK) complex. Oncogene 18, 6867-6874. https://doi.org/10.1038/sj.onc.1203219
  14. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, and Olson AJ. 2009. Auto dock4 and auto dock tools 4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791. https://doi.org/10.1002/jcc.21256
  15. Muller CW, Rey FA, Sodeoka M, Verdine GL, and Harrison SC. 1995. Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 373, 311-317. https://doi.org/10.1038/373311a0
  16. Ndlovu MN, Lint CV, Wesemael KV, Callebert P, Chalbose D, Haegeman G, and Berghe WV. 2009. Hyperactivated $NF{\kappa}B$ and AP-1 transcription factors promote highly accessible chromatin and constitutive transcription across the innterleukin-6 gene promoter in metastatic breast cancer cells. Mol. Cell Biol. 29, 5488-5504. https://doi.org/10.1128/MCB.01657-08
  17. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, and Ferrin TE. 2004. UCSF chimera--visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  18. Sanner MF. 1999. Phython: a programming language for software integration and development. J. Mol. Graph. Model 17, 57-61.
  19. Shibata W, Maeda S, Hikiba Y, Yanai A, Ohmae T, Sakamoto K, Nakagawa H, Ogura K, and Omata M. 2007. Cutting edge: The $I{\kappa}B$ kinase (IKK) inhibitor, MEMO-binding domain peptide blocks inflammatory injury in murine colitis. J. Immunol. 179, 2681-2685. https://doi.org/10.4049/jimmunol.179.5.2681
  20. Strana J and Burke JR. 2007. Ikappa B kinase inhibitors for treating auto immune and inflammatory disorders: potential and challenges. Pharmacol. Sci. 28, 142-148.
  21. Stroud JC, Oltman A, Han A, Bates DL, and Chen L. 2009. Structural basis of HIV-1activation by NF-kappaB-a higher order complex of p50: RelA bound to the HIV-1 LTR. J. Mol. Biol. 393, 98-112. https://doi.org/10.1016/j.jmb.2009.08.023
  22. Trott O and Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455-461.
  23. Whiteside ST and Israel A. 1997. $I{\kappa}B$ proteins: structure, function and regulation. Sem. Cancer Biol. 8, 75-82. https://doi.org/10.1006/scbi.1997.0058
  24. Xu G, Lo YC, Li Q, Napolitano G, Wu X, Jiang X, Dreano M, Karin M, and Wu H. 2011. Crystal structure of inhibitor of ${\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$). Nature 472, 325-330. https://doi.org/10.1038/nature09853
  25. Yoo HJ, Hwang JS, and Kim HB. 2007. Mass analysis of isoflavones in Chungkookjang. Korean J. Microbiol. 43, 54-58.

피인용 문헌

  1. Identification of Antidiabetic Metabolites from Paederia foetida L. Twigs by Gas Chromatography-Mass Spectrometry-Based Metabolomics and Molecular Docking Study vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/7603125