DOI QR코드

DOI QR Code

Basic study on proliferation control of cancer cells using combined ultrasound and LED therapeutic module

초음파와 LED를 이용한 일체형암세포 증식억제 모듈의 기초연구

  • Cho, Kyung-rae (Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology) ;
  • Choe, Se-woon (Department of Medical IT Convergence Engineering, Kumoh National Institute of Technology)
  • Received : 2018.05.15
  • Accepted : 2018.07.27
  • Published : 2018.08.31

Abstract

Ultrasonography and photodynamic therapy have been proposed as useful tools as a treatment for inducing necrosis of cells using reactive oxygen species. Apoptosis is an internal mechanism necessary for cells regardless of damage. Ultrasound has the effect of inducing the apoptosis of these cells, and the frequency of 1 MHz is the most applicable area for medical use. The laser which is generally used in photodynamic therapy has a heat reaction and the treatment is limited. However, as a small light emitting diode is developed, it shows possibility to minimize the equipment and reduce heat reaction. On the other hand, there are relatively few researches on direct effects of light compared with studies using photosensitizers, and the area is also limited. Therefore, in this paper, we have developed a cancer cell proliferation control module using ultrasonic and light emitting diodes, which have relatively few side effects, and quantitatively analyze the effect of the module to propose an optimal suppression technique.

최근 들어 초음파를 활용한 항암 치료법은 미세한 기포 또는 조영제를 환자에게 주입한 후 특정 주파수의 초음파를 발생시켜 세포의 괴사를 유도하는 치료법으로서, 항암치료 중 발생가능한 부작용을 현저히 감소시킬 수 있는 유용한 치료법으로 제안되고 있다. 이는 정기적인 세포의 사멸은 세포의 손상과 관계없이 필수적인 생물학적 프로세스이며, 초음파는 이러한 세포의 사멸을 유도 또는 증폭시키는 효과가 있기 때문으로 알려져 왔다. 한편, 광 역학 치료는 광원의 고유한 파장에 따라 반응하는 광감응제 등과 같은 화합물을 추가적으로 인체에 주입함으로써 특정 암세포의 괴사 유도가 가능하며 이를 위해 다양한 종류의 레이저 사용이 가능하다. 하지만, 고가의 광원과 대형화된 장비, 광원의 자극으로 인한 발열 현상 등의 한계로 제한적인 사용이 가능하여왔다. 이러한 기술적 한계는 소형 발광 다이오드가 개발됨에 따라 광 역학 치료 장비의 소형화와 발열현상의 제어가 가능하게 되었고, 그 결과 발광 다이오드는 레이저의 대체광원으로 인식되었다. 따라서, 본 논문에서는 의료용으로 광범위하게 사용되며, 부작용이 적고, 비교적 저주파인 1 MHz 초음파 발생장치와 저렴한 발광다이오드를 복합적으로 융합한 일체형 암세포 증식억제 모듈을 개발하고 이를 암세포에 적용시켜 효과를 정량적으로 분석하고자 한다.

Keywords

References

  1. A. Jemal, F. Bray, M. Center, J. Ferlay, E. Ward, and D. Forman, "Global cancer statistics", A Cancer Journal for Clinicians, vol. 61, pp. 69-90, Feb. 2011. https://doi.org/10.3322/caac.20107
  2. K. Carr, Y. Ioffe, M. Filippova, P. Duerksen-Hughes, and P. Chan, "Combined ultrasound-curcumin treatment of human cervical cancer cells", European Journal of Obstetrics & Gynecology and Reproductive Biology, vol. 193, pp. 96-101, Aug. 2015. https://doi.org/10.1016/j.ejogrb.2015.07.011
  3. A. Strimpakos and R. Sharma, "Curcumin: preventive and therapeutic properties in laboratory studies and clinical trials", Antioxid Redox Signal, vol. 10, pp. 511-545, Jan. 2008. https://doi.org/10.1089/ars.2007.1769
  4. A. Wickia, D. Witzigmann, V. Balasubramanian, and J. Huwyler, "Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications", Journal of Controlled Release, vol. 200, pp. 138-157, Feb. 2015. https://doi.org/10.1016/j.jconrel.2014.12.030
  5. C. Hopper, "Emerging HIFU applications in cancer therapy", International Journal of Hyperthermia, vol. 31, no. 3, pp. 302-309, Nov. 2015. https://doi.org/10.3109/02656736.2014.969789
  6. T. Haber, L. Baruch, and M. Machluf, "Ultrasound-Mediated Mesenchymal Stem Cells Transfection as a Targeted Cancer Therapy Platform", Scientific Reports, vol. 7, 42046, Feb. 2017.
  7. D. Mele, P. Rizzo, A. Pollina, A. Fiorencis, and R. Ferrari, "Cancer Therapy - Induced Cardiotoxicity: Role of Ultrasound Deformation Imaging as an Aid to Early Diagnosis", Ultrasound in Medicine and Biology, vol. 41, no. 3, pp. 627-643, Jan. 2015. https://doi.org/10.1016/j.ultrasmedbio.2014.11.015
  8. W. Jerjes, T. Upile, Z. Hamdoon, F. Nhembe, R. Bhandari, S. Mackay, P. Shah, C. Mosse, J. Brookes, S. Morley, and C. Hopper, "Ultrasound-Guided Photodynamic Therapy for Deep Seated Pathologies: Prospective Study", Lasers in Surgery and Medicine, vol. 41, no. 9, pp. 612-621, Oct. 2009. https://doi.org/10.1002/lsm.20853
  9. S. Choe, K. Park, C. Park, J. Ryu, and H. Choi, "Combinational light emitting diode-high frequency focused ultrasound treatment for HeLa cell", Computer Assisted Surgery, pp. 79-85, Sep. 2017. https://doi.org/10.1080/24699322.2017.1379158
  10. E. Panzarini, B. Tenuzzo, and L. Dini, "Photodynamic Therapy-Induced Apoptosis of HeLa Cells", Annals of the New York Academy of Sciences, vol. 1171, pp. 617-626, Aug. 2009. https://doi.org/10.1111/j.1749-6632.2009.04908.x
  11. S. Choe, "Application and therapeutic effects of sickle red blood cells for targeted cancer therapy", Journal of the Korea Institute of Information and Communication Engineering, vol. 20, no. 12, pp. 2395-2400, Dec. 2016. https://doi.org/10.6109/jkiice.2016.20.12.2395
  12. M. Marinovich, N. Houssami, P. Macaskill, G. Minckwitz, J. Blohmer, and L. Irw, "Accuracy of ultrasound for predicting pathologic response during neoadjuvant therapy for breast cancer", Cancer Therapy, vol. 136, no. 11, pp. 2730-2737, Nov. 2014.
  13. C. Zhang, K. Zha, W. Bu, D. Ni, Y. Liu, J. Feng, and J. Shi, "Marriage of Scintillator and Semiconductor for Synchronous Radiotherapy and Deep Photodynamic Therapy with Diminished Oxygen Dependence", Angewandte Chemie, vol. 54, no. 6, pp. 1770-1774, Dec. 2014. https://doi.org/10.1002/anie.201408472
  14. J. Paris, P. Torre, M. Cabanas, M. Manzano, M. Grau, A. Flores, and M. Vallet-Regi, "Vectorization of ultrasound responsive nanoparticles in placental mesenchymal stem cells for cancer therapy", Nanoscale, vol. 9, pp. 5528-5537, Mar. 2017. https://doi.org/10.1039/C7NR01070B
  15. S. Gao, G. Wang, Z. Qin, X. Wang, G. Zhao, Q. Ma, and L. Zhu, "Oxygen-generating hybrid nanoparticles to enhance fluorescent/photoacoustic/ultrasound imaging guided tumor photodynamic therapy", Biomaterials, vol. 112, pp. 324-335, Oct. 2017. https://doi.org/10.1016/j.biomaterials.2016.10.030
  16. E. Chang, C. Ting, P. Hsu, Y Lin, E. Liao, C. Huang, Y. Chang, H. Chan., C. Chiang, H. Liu, K. Wei, C. Fan, and C. Yeh, "Angiogenesis-targeting microbubbles combined with ultrasound-mediated gene therapy in brain tumors", Journal of Controlled Release, vol. 255, no. 10, pp. 164-175, Apr. 2017. https://doi.org/10.1016/j.jconrel.2017.04.010
  17. H. Jing, W. Cheng, S. Li, B. Wu, X. Leng, S. Xu, and J. Tian, "Novel cell-penetrating peptide-loaded nanobubbles synergized with ultrasound irradiation enhance EGFR siRNA delivery for triple negative Breast cancer therapy", Colloids and Surfaces B: Biointerfaces, vol. 146, pp. 387-395, Jun. 2016. https://doi.org/10.1016/j.colsurfb.2016.06.037
  18. P. Bhandari, G. Novikova, C. Goergen, and J. Irudayaraj, "Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy", Scientific Reports, vol. 8, 3112, Feb. 2018.
  19. X. Song, L. Feng, C. Liang, K. Yang, and Z. Liu, "Ultrasound Triggered Tumor Oxygenation with Oxygen-Shuttle Nanoperfluorocarbon to Overcome Hypoxia-Associated Resistance in Cancer Therapies", Nano Letters, vol. 16, no. 10, pp. 6145-6153, Sep. 2016. https://doi.org/10.1021/acs.nanolett.6b02365

Cited by

  1. 다파장 LED의 동시 자극 인가가 가능한 세포 분화 유도기 vol.25, pp.2, 2018, https://doi.org/10.6109/jkiice.2021.25.2.221