DOI QR코드

DOI QR Code

Antimicrobial Activity of Antimicrobial Peptide LPcin-YK3 Derived from Bovine Lactophoricin

  • Kim, Ji-Sun (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Jeong, Ji-Ho (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Cho, Jang-Hee (Biomaterial Research Center) ;
  • Lee, Dong-Hee (Biomaterial Research Center) ;
  • Kim, Yongae (Department of Chemistry, Hankuk University of Foreign Studies)
  • Received : 2018.05.08
  • Accepted : 2018.06.16
  • Published : 2018.08.28

Abstract

We previously reported on lactophoricin (LPcin), a cationic ${\alpha}-helical$ antimicrobial peptide derived from bovine milk, which has antimicrobial effects on Candida albicans as well as Gram-positive and Gram-negative bacteria. In this study, we designed the LPcin-YK3 peptide, a shorter analog of LPcin, and investigated its antimicrobial activity. This peptide, consisting of 15 amino acids with + 3 net charges, was an effective antimicrobial agent against the on the Gram-positive strain, Staphylococcus aureus (MIC: $0.62{\mu}g/ml$). In addition, the hemolytic activity assay revealed that the peptide was not toxic to mouse and human erythrocytes up to $40{\mu}g/ml$. We also used circular dichroism spectroscopy to confirm that peptide in the presence of lipid has ${\alpha}-helical$ structures and later provide an overview of the relationship between each structure and antimicrobial activity. This peptide is a member of a new class of antimicrobial agents that could potentially overcome the problem of bacterial resistance caused by overuse of conventional antibiotics. Therefore, it could be used as a therapeutic or natural additive, particularly in the cosmetics industry.

Keywords

References

  1. Brogden KA. 2005. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbiol. 3: 238-250. https://doi.org/10.1038/nrmicro1098
  2. Liu Y, Luo J, Xu C, Ren F, Peng C, Wu G, Zhao J. 2000. Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiol. 122: 1015-1024. https://doi.org/10.1104/pp.122.4.1015
  3. Chernysh S, Kim SI, Bekker G, Pleskach VA, Filatova NA, Anikin VB, et al. 2002. Antiviral and antitumor peptides from insects. Proc. Natl. Acad. Sci. USA 99: 12628-12632. https://doi.org/10.1073/pnas.192301899
  4. Hancock RE, Sahl HG. 2006. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 24: 1551-1557. https://doi.org/10.1038/nbt1267
  5. Zasloff M. 2002. Antimicrobial peptides of multicellular organisms. Nature 415: 389-395. https://doi.org/10.1038/415389a
  6. Rydlo T, Miltz J, Mor A. 2006. Eukaryotic antimicrobial peptides: promises and premises in food safety. J. Food Sci. 71: R125-R135. https://doi.org/10.1111/j.1750-3841.2006.00175.x
  7. Lopez-Meza JE, Ochoa-Zarzosa A, Barboza-Corona JE, Bideshi DK. 2015. Antimicrobial peptides: current and potential applications in biomedical therapies. Biomed. Res. Int. 2015: 367243.
  8. Rahnamaeian M, Vilcinskas A. 2015. Short antimicrobial peptides as cosmetic ingredients to deter dermatological pathogens. Appl. Microbiol. Biotechnol. 99: 8847-8855. https://doi.org/10.1007/s00253-015-6926-1
  9. Kenshi Y, Gallo RL. 2008. Antimicrobial peptides in human skin disease. Eur. J. Dermatol. 18: 11-21.
  10. Bardan A, Nizet, Gallo RL. 2004. Antimicrobial peptides and the skin. Expert. Opin. Biol. Ther. 4: 543-549. https://doi.org/10.1517/14712598.4.4.543
  11. Park TJ, Kim JS, Choi SS, Kim Y. 2009. Cloning, expression, isotope labeling, purification, and characterization of bovine antimicrobial peptide, lactophoricin in Escherichia coli. Protein Expr. Purif. 65: 23-29. https://doi.org/10.1016/j.pep.2008.12.009
  12. Kim JS, Park TJ, Kim Y. 2009. Optimized Methods for purification and NMR measurement of antibacterial peptide, bovine lactophoricin, J. Korean Magn. Reson. Soc. 13: 96-107. https://doi.org/10.6564/JKMRS.2009.13.2.096
  13. Park TJ, Kim JS, Ahn HC, Kim Y. 2011. Solution and solidstate NMR structural studies of antimicrobial peptides LPcin-I and LPcin-II. Biophys. J. 101: 1193-1201. https://doi.org/10.1016/j.bpj.2011.06.067
  14. Kim JS, Jeong JH, Kim KS, Kim Y. 2015. Optimized expression and characterization of antimicrobial peptides, LPcin analogs. Bull. Korean Chem. Soc. 36: 1148-1154. https://doi.org/10.1002/bkcs.10213
  15. Jeong JH, Kim JS, Choi SS, Kim Y. 2016. NMR structural studies of antimicrobial peptides: LPcin analogs. Biophys. J. 110: 423-430. https://doi.org/10.1016/j.bpj.2015.12.006
  16. Cipakova I, Gasperik J, Hostinova E. 2006. Expression and purification of human antimicrobial peptide, dermcidin, in Escherichia coli. Protein Expr. Purif. 45: 269-274. https://doi.org/10.1016/j.pep.2005.07.002
  17. Sharpe S, Yau WM, Tycko R. 2005. Expression and purification of a recombinant peptide from the Alzheimer's ${\beta}$-amyloid protein for solid-state NMR, protein expression and purification. Protein Expr. Purif. 42: 200-210. https://doi.org/10.1016/j.pep.2005.03.005
  18. Greenfield NJ. 2006. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1: 2876-2890.
  19. Gopal R, Park JS, Seo CH, Park Y. 2012. Applications of circular dichroism for structural analysis of gelatin and antimicrobial peptides. Int. J. Mol. Sci. 13: 3229-3244. https://doi.org/10.3390/ijms13033229
  20. Zasloff M. 1987. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84: 5449-5453. https://doi.org/10.1073/pnas.84.15.5449
  21. Sovadinova I, Palermo EF, Urban M, Mpiga P, Caputo GA, Kuroda K. 2011. Activity and mechanism of antimicrobial peptide-mimetic amphiphilic polymethacrylate derivatives. Polymers 3: 1512-1532. https://doi.org/10.3390/polym3031512
  22. Hancock RE, Falla T, Brown MH. 1995. Cationic antibacterial peptides. Adv. Microb. Physiol. 37: 135-75.
  23. Piers KL, Brown MH, Hancock RE. 1994. Improvement of outer membrane-permeabilization and lipopolysaccharidebinding activities of an antimicrobial cationic peptide by Cterminal modification. Antimicrob. Agents Chemother. 38: 2311-2316. https://doi.org/10.1128/AAC.38.10.2311
  24. Odell EW, Sarra R, Foxworthy M, Chapple DS, Evans RW. 1996. Antibacterial activity of peptides homologous to a loop region in human lactoferrin. FEBS Lett. 382: 175-178. https://doi.org/10.1016/0014-5793(96)00168-8
  25. Düring K, Porsch P, Mahn A, Brinkmann O, Gieffers W. 1999. The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 449: 93-100. https://doi.org/10.1016/S0014-5793(99)00405-6
  26. Ibrahim HR, Yamada M, Matsushita K, Kobayashi R, Kato A. 1994. Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a hydrophobic pentapeptide into its Cterminus. J. Biol. Chem. 269: 5059-5063.
  27. Matsuzaki K, Sugishita K, Harada M, Fujii N, Miyajima K. 1997. Interactions of an antimicrobial peptide, magainin 2, with outer and inner membranes of gram-negative bacteria. Biochim. Biophys. Acta 1327: 119-130. https://doi.org/10.1016/S0005-2736(97)00051-5
  28. Son DJ, Ha SJ, Song HS, Lim Y, Yun YP, Lee JW, et al. 2003. Melittin inhibits vascular smooth muscle cell proliferation through induction of apoptosis via suppression of nuclear factor-kappaB and Akt activation and enhancement of apoptotic protein expression. J. Pharmacol. Exp. Ther. 317: 627-634.
  29. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 28: 603-661. https://doi.org/10.1128/CMR.00134-14
  30. Birnie AJ, Bath-Hextall FJ, Ravenscroft JC, Williams HC. 2008. Interventions to reduce Staphylococcus aureus in the management of atopic eczema. Cochrane Database Syst. Rev. (3): CD003871. doi: 10.1002/14651858.CD003871.pub2.
  31. Masatoma M, Yasunori T, Yuji O, Katsunori M, Aya S, Hajime U. 2001. Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against Gram-negative bacteria. FEBS Lett. 500: 56-59. https://doi.org/10.1016/S0014-5793(01)02587-X
  32. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
  33. Evans BC, Nelson CE, Yu SS, Beavers KR, Kim AJ, Li H, et al. 2013. Ex vivo red blood cell hemolysis assay for the evaluation of pH-responsive endosomolytic agents for cytosolic delivery of biomacromolecular drugs. J. Vis. Exp. (73): e50166. doi: 10.3791/50166.
  34. Molly FC, Sean WD, Mark SW, Colleen MS, Scott AS, Don RP, et al. 2000. Standard practice for assessment of hemolytic properties of materials. American Society for Testing of Materials. ASTM F756-00. Available from: https://www.astm.org/DATABASE.CART/HISTORICAL/F756-00.htm

Cited by

  1. Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro vol.21, pp.5, 2018, https://doi.org/10.4142/jvs.2020.21.e80
  2. Review of the safety of application of cosmetic products containing parabens vol.40, pp.1, 2018, https://doi.org/10.1002/jat.3917
  3. Insight into the bovine milk peptide LPcin‐YK3 selection in the proteolytic system of Lactobacillus species vol.26, pp.8, 2018, https://doi.org/10.1002/psc.3268
  4. Feleucin-K3 Analogue with an α-(4-Pentenyl)-Ala Substitution at the Key Site Has More Potent Antimicrobial and Antibiofilm Activities in Vitro and in Vivo vol.7, pp.1, 2021, https://doi.org/10.1021/acsinfecdis.0c00545