References
- Leroy F, Vuyst LD. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
- Ouwehand AC, Salminen S, Isolauri E. 2002. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82: 279-289. https://doi.org/10.1023/A:1020620607611
- Peterbauer C, Maischberger T, Haltrich D. 2011. Food-grade gene expression in lactic acid bacteria. Biotechnol. J. 6: 1147-1161. https://doi.org/10.1002/biot.201100034
- Mierau I, Kleerebezem M. 2005. 10 years of the nisincontrolled gene expression system (NICE) in Lactococcus lactis. Appl. Microbiol. Biotechnol. 68: 705-717. https://doi.org/10.1007/s00253-005-0107-6
- Li L, Han NS. 2018. Emerging Areas in Bioengineering: Application of lactic acid bacteria for food biotechnology, pp. 375-398, Wiley-VCH, Hoboken.
- LevanderF, Radstrom P. 2001. Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucose- and lactose-utilizing Streptococcusthermophilus. Appl. Environ. Microbiol. 67: 2734-2738. https://doi.org/10.1128/AEM.67.6.2734-2738.2001
- YangYH, Song EJ, Park SH, Kim JN, Lee KW, Kim EJ, et al. 2010. Loss of phosphomannomutase activity enhances actinorhodin production in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 86: 1485-1492. https://doi.org/10.1007/s00253-009-2368-y
- Maki M, Jarvinen N, Rabina J, Roos C, Maaheimo H, Renkonen R.2002. Functional expression of Pseudomonas aeruginosa GDP-4-keto-6-deoxy-D-mannose reductase which synthesizes GDP-rhamnose. Eur. J. Biochem. 269: 593-601. https://doi.org/10.1046/j.0014-2956.2001.02688.x
- Suzuki N, Nakano Y, Yoshida Y, Nezu T, Terada Y, Yamashita Y, et al. 2002. Guanosine diphosphate-4-keto-6-deoxy-D-mannose reductasein the pathway for the synthesis of GDP-6-deoxy-D-talose in Actinobacillus actinomycetemcomitans. Eur. J. Biochem. 269: 5963-5971. https://doi.org/10.1046/j.1432-1033.2002.03331.x
-
Li L, Shin SY, Lee SJ, Moon JS, Im WT, Han NS. 2016. Production of ginsenoside F2 by using Lactococcus lactis with enhanced expression of
${\beta}$ -glucosidase gene from Paenibacillus mucilaginosus. J. Agric. Food Chem. 64: 2506-2512. https://doi.org/10.1021/acs.jafc.5b04098 - Wu BY, Zhang YX, Zheng R, Guo C, Wang PG. 2002. Bifunctional phosphomannose isomerase/GDP-D-mannose pyrophosphorylase in the point of control for GDP-Dmannose biosynthesis in Helicobacter pylori. FEBS Lett. 519: 87-92. https://doi.org/10.1016/S0014-5793(02)02717-5
-
Maischberger T, Mierau I, Peterbauer CK, Hugenholtz J, Haltrich D. 2010. High-level expression of Lactobacillus
${\beta}$ -galactosidases in Lactococcus lactis using the food-grade, nisin-controlled expression system NICE. J. Agric. Food Chem. 58: 2279-2287. https://doi.org/10.1021/jf902895g - Roche ED, Sauer RT. 1999. SsrA-mediated peptide tagging caused by rare codons and tRNA scarcity. EMBO J. 18: 4579-4589. https://doi.org/10.1093/emboj/18.16.4579
- Angov E, Hillier CJ, Kincaid RL, Lyon JA. 2008. Heterologous protein expression is enhanced by harmonizing the codon usage frequencies of the target gene with those of the expression host. PLoS One 3: e2189. https://doi.org/10.1371/journal.pone.0002189
- Elling L, Ritter JE, Verseck S. 1996. Expression, purification and characterization of recombinant phosphomannomutase and GDP-a-D-mannose pyrophosphorylase from Salmonella enteria, group B, for the synthesis of GDP-a-D-mannose from D-mannose. Glycobiology 6: 591-597. https://doi.org/10.1093/glycob/6.6.591
- Oesterhelt C, Schnarrenberger C, Gross W. 1997. The reaction mechanism of phosphomannomutase in plants. FEBS Lett. 401: 35-37. https://doi.org/10.1016/S0014-5793(96)01425-1
- Akutsu JI, Zhang ZL, Tsujimura M, Sasaki M, Yohda M, Kawarabayasi Y. 2005. Characterization of a thermostable enzyme with phosphomannomutase/ phosphoglucomutase activities from the hyperthermophilic archaeon Pyrococcus horikoshii OT3. J. Biochem. 138: 159-166. https://doi.org/10.1093/jb/mvi115
- Chae YK, Markley JL. 2000. Functional recombinant rabbit muscle phosphoglucomutase from Escherichia coli. Protein Expr. Purif. 20: 124-127. https://doi.org/10.1006/prep.2000.1288
- Videira PA, Cortes LL, Fialho AM, Sacorreia I. 2000. Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities in the gellan gum-producing strain Sphingomonaspaucimobilis ATCC 31461. Appl. Environ. Microbiol. 66: 2252-2258. https://doi.org/10.1128/AEM.66.5.2252-2258.2000
- Rashid N, Kanai T, Atomi H, Imanaka T. 2004. Among multiple phosphomannomutase gene orthologues, only one gene encodes a protein with phosphoglucomutase and phosphomannomutase activities in Thermococcus kodakaraensis. J. Bacteriol. 186: 6070-6076. https://doi.org/10.1128/JB.186.18.6070-6076.2004
- Huang HD, Li XY, Wu MM, Wang SX, Li GQ, Ma T. 2013. Cloning, expression and characterization of a phosphoglucomutase/phosphomannomytase from sphinganproducting Sphingomonas sanxanigenes. Biotechnol. Lett. 35 : 1265-1270. https://doi.org/10.1007/s10529-013-1193-7
Cited by
- Transcriptome Analysis Reveals Biosynthesis of Important Bioactive Constituents and Mechanism of Stem Formation of Dendrobium huoshanense vol.10, pp.None, 2018, https://doi.org/10.1038/s41598-020-59737-2