참고문헌
- Reichenbach H. 2005. Myxococcales, pp. 1059-1144. In Brenner DJ, Krieg NR, Staley JT, Garrity GM (eds.), Bergey's Manual of Systematic Bacteriology, 2nd Ed. Bergey's Manual Trust, East Lansing, MI, USA.
- Shimkets LJ, Dworkin M, Reichenbach H. 2006. The myxobacteria, pp. 31-115. In Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds.), The Prokaryotes, Vol. 7. Springer, New York, NY, USA.
- Weissman KJ, Muller R. 2010. Myxobacterial secondary metabolites: bioactivities and modes-of-action. Nat. Prod. Rep. 27: 1276-1295. https://doi.org/10.1039/c001260m
- Herrmann J, Fayad AA, Muller R. 2017. Natural products from myxobacteria: novel metabolites and bioactivities. Nat. Prod. Rep. 34: 135-160. https://doi.org/10.1039/C6NP00106H
- Meiser P, Bode HB, Muller R. 2006. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 103: 19128-19133. https://doi.org/10.1073/pnas.0606039103
- Meiser P, Weissman KJ, Bode HB, Krug D, Dickschat JS, Sandmann A, et al. 2008. DKxanthene biosynthesis - understanding the basis for diversity-oriented synthesis in myxobacterial secondary metabolism. Chem. Biol. 15: 771-781. https://doi.org/10.1016/j.chembiol.2008.06.005
- Burchard RP, Burchard AC, Parish JH. 1977. Pigmentation phenotype instability in Myxococcus xanthus. Can. J. Microbiol. 23: 1657-1662. https://doi.org/10.1139/m77-238
- Furusawa G, Dziewanowska K, Stone H, Settles M, Hartzell P. 2011. Global analysis of phase variation in Myxococcus xanthus. Mol. Microbiol. 81: 784-804. https://doi.org/10.1111/j.1365-2958.2011.07732.x
- Laue BE, Gill RE. 1995. Using a phase-locked mutant of Myxococcus xanthus to study the role of phase variation in development. J. Bacteriol. 177: 4089-4096. https://doi.org/10.1128/jb.177.14.4089-4096.1995
- Wenzel SC, Muller R. 2009. The impact of genomics on the exploitation of the myxobacterial secondary metabolome. Nat. Prod. Rep. 26: 1385-1407. https://doi.org/10.1039/b817073h
- Sasse F, Steinmetz H, Hofle G, Reichenbach H. 1993. Rhizopodin, a new compound from Myxococcus stipitatus (myxobacteria) causes formation of rhizopodia-like structures in animal cell cultures. Production, isolation, physico-chemical and biological properties. J. Antibiot. (Tokyo) 46: 741-748. https://doi.org/10.7164/antibiotics.46.741
- Sasse F, Bohlendorf B, Herrmann M, Kunze B, Forche E, Steinmetz H, et al. 1999. Melithiazols, new betamethoxyacrylate inhibitors of the respiratory chain isolated from myxobacteria. Production, isolation, physico-chemical and biological properties. J. Antibiot. (Tokyo) 52: 721-729. https://doi.org/10.7164/antibiotics.52.721
- Trowitzsch-Kienast W, Forche E, Wray V, Reichenbach H, Jurkiewicz E, Hunsmann G, Hofle G. 1992. Antibiotika aus gleitenden bakterien, 45. phenalamide, neue HIV-1-inhibitoren aus Myxococcus stipitatus Mx s40. Liebigs Ann. Chem. 1992: 659-779. https://doi.org/10.1002/jlac.1992199201112
- Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, et al. 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters. Nucleic Acids Res. 39: W339-W346. https://doi.org/10.1093/nar/gkr466
- Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. 2015. antiSMASH 3.0 - a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res. 43: W237-W243. https://doi.org/10.1093/nar/gkv437
- Johnson M, Zaretskaya I, Raytselis Y, Mereshuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9. https://doi.org/10.1093/nar/gkn201
- Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. 2015. CDD: NCBI's conserved domain database. Nucleic Acids Res. 43: D222-D226. https://doi.org/10.1093/nar/gku1221
- Cho K, Zusman DR. 1999. Sporulation timing in Myxococcus xanthus is controlled by the espAB locus. Mol. Microbiol. 34: 714-725. https://doi.org/10.1046/j.1365-2958.1999.01633.x
- Shi W, Kohler T, Zusman DR. 1994. Motility and chemotaxis in Myxococcus xanthus. Methods Mol. Genet. 3: 258-269.
- Shin H, Youn J, An D, Cho K. 2013. Production of antimicrobial substances by strains of myxobacteria Corallococcus and Myxococcus. Korean J. Microbiol. Biotechnol. 41: 44-51. https://doi.org/10.4014/kjmb.1210.10011
- Zimbro MJ, Power DA, Miller SM, Wilson GE, Johnson JA (eds.). 2009. Difco and BBL Manual: Manual of Microbiological Culture Media, 2nd Ed. Becton Dickinson and Co., Sparks, MD, USA.
- Park S, Hyun H, Lee JS, Cho K. 2016. Identification of the phenalamide biosynthetic gene cluster in Myxococcus stipitatus DSM 14675. J. Microbiol. Biotechnol. 26: 1636-1642 https://doi.org/10.4014/jmb.1603.03023
- Huntley S, Kneip S, Treuner-Lange A, Sogaard-Andersen L. 2013. Complete genome sequence of Myxococcus stipitatus strain DSM 14675, a fruiting myxobacterium. Genome Announc. 1: e0010013. https://doi.org/10.1128/genomeA.00100-13
- Hyun H, Park S, Cho K. 2016. Analysis of the melithiazol biosynthetic gene cluster in Myxococcus stipitatus DSM 14675. Microbiol. Biotechnol. Lett. 44: 391-399. https://doi.org/10.4014/mbl.1606.06008
- Berdy J. 2012. Thoughts and facts about antibiotics: where we a re now and where we are heading . J. Antibiot. (Tokyo) 65: 385-395. https://doi.org/10.1038/ja.2012.27
- Schaberle TF, Lohr F, Schmitz A, Konig GM. 2014. Antibiotics from myxobacteria. Nat. Prod. Rep. 31: 953-972. https://doi.org/10.1039/c4np00011k
- Keane R, Berleman J. 2016. The predatory life cycle of Myxococcus xanthus. Microbiology 162: 1-11 https://doi.org/10.1099/mic.0.000208
- Dey A, Vassallo CN, Conklin AC, Pathak DT, Troselj V, Wall D. 2016. Sibling rivalry in Myxococcus xanthus is mediated by kin recognition and a polyploid prophage. J. Bacteriol. 198: 994-1004. https://doi.org/10.1128/JB.00964-15
피인용 문헌
- Mutants defective in the production of encapsulin show a tan-phase-locked phenotype in Myxococcus xanthus vol.57, pp.9, 2019, https://doi.org/10.1007/s12275-019-8683-9