DOI QR코드

DOI QR Code

접촉식 가수열분해 반응에 의한 감압잔사유의 점도 강하에 대한 연구

Viscosity Reduction by Catalytic Aquathermolysis Reaction of Vacuum Residues

  • 고진영 (호서대학교 화학공학과) ;
  • 박승규 (호서대학교 화학공학과)
  • Ko, Jin Young (Department of Chemical Engineering, Hoseo University) ;
  • Park, Seung-Kyu (Department of Chemical Engineering, Hoseo University)
  • 투고 : 2018.05.25
  • 심사 : 2018.06.22
  • 발행 : 2018.08.10

초록

본 연구에서는 접촉식 가수열분해 반응을 이용하여 원유를 감압증류한 후 생산되는 고점도의 감압잔사유(VR)의 개질반응을 실시하였다. 감압잔사유는 30 bar, $300^{\circ}C$ 이상에서 24 h 동안 수증기(steam)와 반응하면, 구성성분 중에서 레진류와 아스팔텐류가 감소하고, 포화탄화수소류(saturates)나 방향족탄화수소류(aromatics)가 증가하는 경향을 보였다. 이때 스팀 양이 적은 경우에는 가수열분해 반응 후 아스팔텐 함량이 증가되는 역반응 효과도 관측되었다. 수소공여제인 데칼린을 사용하며 메탈옥사이드-제올라이트계 촉매를 사용하는 접촉식 가수열분해 반응 결과 레진과 아스팔텐류가 10% 정도 줄고 방향족 탄화수소류가 10% 증가하면서 점도 감소효과도 70% 정도로 우수하였다. GC-Mass spectroscopy를 이용하여 촉매 사용 시 가수열분해 반응 결과 분자량이 적은 물질로의 분해효과가 우수함을 확인할 수 있었다.

In this study, the reforming reaction of vacuum residues (VR), high viscosity oil residues produced from vacuum distillation process of petroleum oil, was carried out using catalytic aquathermolysis reaction. VR showed a prone to decrease the amount of resins and asphaltenes in the constituents, and to increase saturates and aromatics when reacting with steam at 30 bar and above $300^{\circ}C$ for 24 h. When the amount of steam is not enough at this reaction, the asphaltene content in the products was rather increased after the reaction. As a result of the catalytic aquathermolysis using the metal oxide-zeolite catalyst with the decaline as a hydrogen donor, a 10% decrease in resin and asphaltene as well as a 10% increase in the aromatic hydrocarbon were observed. Consequently, the viscosity of VR decreased by 70% after the reaction. GC-Mass spectroscopy showed that the aquathermolysis of VR resulted in the decomposition of the resins and asphaltens into a low molecular weight material.

키워드

참고문헌

  1. R. F. Meyer, E. D. Attanasi, and P. A. Freeman, Heavy Oil and Natural Bitumen Resources in Geological Basins of the World, U.S. Department of Interior & U.S. Geological Survey Open File-Report 2007-1084 (2007).
  2. H. C. Lee and S. K. Park, Upgrading of heavy oil or vacuum residual oil: Aquathermolysis and demetallization, Appl. Chem. Eng., 27, 344-352 (2016).
  3. J. Y. Ko, D. H. Park, and S. K. Park, Refining of vacuum residues by aquathermolysis reaction, Appl. Chem. Eng., 28, 467-472 (2017).
  4. O. Muraza, Hydrous pyrolysis of heavy oil using solid acid minerals for viscosity reduction, J. Anal. Appl. Pyrolysis, 114, 1-10 (2015). https://doi.org/10.1016/j.jaap.2015.04.005
  5. M. F. Ali and S. Abbas, A review of methods for the demetallization of residual fuel oils, Fuel Process. Technol., 87, 573-584 (2006). https://doi.org/10.1016/j.fuproc.2006.03.001
  6. H. C. Kim, W. J. Jeong, W. C. Lee, and S. K. Park, Demetallization by MCM-48 from asphalten of vacuum residual oils: Analysis by UV-visible spectrophotometer, Asian J. Chem., 27, 4288-4290 (2015). https://doi.org/10.14233/ajchem.2015.19516
  7. P. R. Kapadia, M. S. Kallos, and I. D. Gates, A review of pyrolysis, aquathermolysis, and oxidation of Athabasca bitumen, Fuel Process. Technol., 131, 270-289 (2015). https://doi.org/10.1016/j.fuproc.2014.11.027
  8. O. Muraza and A. Galadima, Aquathermolysis of heavy oil: A review and perspective on catalyst development, Fuel, 157, 219-231 (2015). https://doi.org/10.1016/j.fuel.2015.04.065
  9. J. B. Hyne, Aquathermolysis of heavy oils, Proceedings of 2nd Inernational. Conference of "The Future of Heavy Crude and Tar Sands." February 7-17, Caracas, Venezuela (1982): p. 404-411, McGraw Hill, NY, USA (1984).
  10. A. Bera and T. Babadagli, Status of electromagnetic heating for enhanced heavy oil/bitumen recovery and future prospects: A review, Appl. Energy, 151, 206-226 (2015). https://doi.org/10.1016/j.apenergy.2015.04.031
  11. F. R. Ahmadun, A. Pendashteh, L. C. Abdullah, D. R. A. Biak, S. S. Madaeni, and Z. Z. Abidin, Review of technologies for oil and gas produced water treatment, J. Hazard. Mater., 170, 530-551 (2009). https://doi.org/10.1016/j.jhazmat.2009.05.044
  12. C. Wu, G. L. Lei, C. J. Yao, K, J. Sun, P. Y. Gai, and Y. B. Cao, Mechanism for reducing the viscosity of extra-heavy oil by aquathermolysis with an amphiphilic catalyst, J. Fuel Chem. Technol., 38, 684-690 (2010). https://doi.org/10.1016/S1872-5813(11)60004-2
  13. F. Zhao, X. Wang, Y. Wang, and Y. Shi, The catalytic aquathermolysis of heavy oil in the presence of a hydrogen donor under reservoirs conditions, J. Chem. Pharm. Res., 6(5), 2037-2041 (2014).
  14. S. K. Maity, J. Ancheyta, and G. Marroquin, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: A review, Energy Fuels, 24, 2809-2816 (2010). https://doi.org/10.1021/ef100230k
  15. Y. H. Shokrlu and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro- and nano-metal particles during aqueous and non-aqueous thermal applications, J. Pet. Sci. Eng., 119, 210-220 (2014). https://doi.org/10.1016/j.petrol.2014.05.012
  16. S. B. Wen, Y. J. Liu, and Y. W. Song, Effect of silicotungstic acid on catalytic visbreaking of extra heavy oil from Shengli oilfield, J. Daqing Pet. Inst., 28, 25-27 (2004).
  17. J. Wang, Y. Z. Yuan, L. Zhang, and R. Wang, The influence of viscosity on stability of foamy oil in the process of heavy oil solution gas drive, J. Pet. Sci. Eng., 66, 69-74 (2009). https://doi.org/10.1016/j.petrol.2009.01.007
  18. S. Merissa, P. Fitriani, F. Iskandar, and M. Abdullah, Preliminary study of natural zeolite as catalyst for decreasing the viscosity of heavy oil, AIP Conf. Proc., 1554, 131-134 (2013).
  19. C. Ovalles, P. Rengel-Unda, J. Bruzual, and A. Salazar, Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions. Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator, Fuel Chem., 48, 59-60 (2003).
  20. C. Ovalles, C. Vallejos, T. Vasquez, I. Rojas, U. Ehrman, J. L. Benitez, and R. Martinez, Downhole upgrading of extra-heavy crude oil using hydrogen donors and methane under steam injection conditions, Pet. Sci. Technol., 21, 255-274 (2003). https://doi.org/10.1081/LFT-120016947
  21. Y. Liu and H. Fan, The effect of hydrogen donor additive on the viscosity of heavy oil during steam stimulation, Energy Fuels, 16, 842-846 (2002). https://doi.org/10.1021/ef010247x
  22. C. Ovalles, P. R. Unda, J. Bruzual, and A. Salazar, Upgrading of extra-heavy crude using hydrogen donor under steam injection conditions: Characterization by pyrolysis GC-MS of the asphaltenes and effects of a radical initiator, ACS Fuel Chem. Div. Reprints, 48, 59-60 (2003).
  23. P. Jing, Q. Li, M. Han, D. Sun, L. Jia, and W. Fang, Effect of $Ni^{2+}$ and $Sn^{2+}$ modified $SO_4^{2-}/ZrO_2$ solid super-acid catalysts on visbreaking of heavy petroleum oil, Shiyou Huagong (Petrochem. Technol.), 36, 237-241 (2007).
  24. L. Zhong, Y. Liu, H. Fan, and S. Jiang, Liaohe extra-heavy crude oil underground aquathermolytic treatments using catalyst and hydrogen donors under steam injection conditions. Proceeding of SPE International Improved Oil Recovery Conference in Asia Pacific, October 20-21, Kuala Lumpur, Malaysia (2003): SPE-84863 (2003).