DOI QR코드

DOI QR Code

고해상도 저전력 센서 시스템을 위한 아날로그-디지털 변환기의 구조 개선

Architecture Improvement of Analog-Digital Converter for High-Resolution Low-Power Sensor Systems

  • Shin, Youngsan (School of Electronic Engineering and Research Institute of Future Automobile, Soongsil University) ;
  • Lee, Seongsoo (School of Electronic Engineering and Research Institute of Future Automobile, Soongsil University)
  • 투고 : 2018.04.29
  • 심사 : 2018.05.29
  • 발행 : 2018.06.30

초록

센서 시스템의 아날로그-디지털 변환기(ADC: analog-to-digital converter)에서는 높은 해상도, 낮은 전력 소모, 높은 신호 대역폭이 요구된다. 시그마-델타 ADC는 높은 차수 구조와 높은 오버샘플링 비를 통해 고해상도를 얻을 수 있으나 전력 소모가 높고 신호 대역폭이 낮다. 연속 근사 레지스터(SAR: successive-approximation-register) ADC의 경우 저전력 동작이 가능하나 공정상 부정합으로 인해 해상도에 한계가 있다. 본 논문에서는 이러한 단점들을 극복하기 위한 ADC 구조 개선에 대해 살펴본다.

In sensor systems, ADC (analog-to-digital converter) demands high resolution, low power consumption, and high signal bandwidth. Sigma-delta ADC achieves high resolution by high order structure and high over-sampling ratio, but it suffers from high power consumption and low signal bandwidth. SAR (successive-approximation-register) ADC achieves low power consumption, but there is a limitation to achieve high resolution due to process mismatch. This paper surveys architecture improvement of ADC to overcome these problems.

키워드

참고문헌

  1. W. Kester, "Which ADC Architecture Is Right for Your Application?," Analog Dialogue, 2005.
  2. J. Choi, C. Park, and J. Choi, "A High-resolution Low-noise Capacitance to Digital Converter," Journal of IEIE, vol. 54, no. 12, pp. 81-87, 2017. https://doi.org/10.5573/ieie.2017.54.12.81
  3. Maxim, "Understanding SAR ADCs: Their Architecture and Comparison with Other ADCs," https://www.maximintegrated.com/en/app-notes/index.mvp/id/1080
  4. S. Choi, H. Ku, H. Son, B. Kim, H. Park, and J. Sim., "An 84.6-dB-SNDR and 98.2-dB-SFDR Residue-Integrated SAR ADC for Low-Power Sensor Applications," IEEE Journal of Solid-State Circuits, vol. 53, no. 2, pp. 404-417, 2018. DOI: 10.1109/JSSC.2017.2774287
  5. S. Wu and J. Wu, "A 81-dB Dynamic Range 16-MHz Bandwidth Delta-Sigma Modulator Using Background Calibration," IEEE Journal of Solid-State Circuits, vol. 48, no. 9, pp. 2170-2179, 2013. DOI: 10.1109/JSSC.2013.2264137
  6. F. Mostert, D. Schinkel, W. Groothedde, L. Breems, R. Heeswijk, M. Koerts. E. Iersel. D. Groeneveld, G. Holland. P. Zeelen, D. Hissink, M. Pos, P. Wielage, F. Jorritsma, and M. Middelink, "5.1 A $5{\times}80W$ 0.004% THD+N Automotive Multiphase Class-D Audio Amplifier with Integrated Low-latency ${\Delta}{\Sigma}$ ADCs for Digitized Feedback after the Output Filter," in Proc. of IEEE International Solid-State Circuits Conference, pp. 86-87, 2017. DOI: 10.1109/ISSCC.2017.7870273
  7. C. Chen, Y. Zhang and G. Temes, "History, present state-of-art and future of incremental ADCs," in Proc. of European Solid-State Circuits Conference, pp. 83-86, 2016. DOI: 10.1109/ESSCIRC.2016.7598248
  8. Y. Jung and J. Roh, "The Incremental Delta-Sigma ADC for A Single-Electrode Capacitive Touch Sensor," j.inst.Korean.electr.electron.eng, vol. 17. no. 3, pp. 234-240, 2013. DOI : 10.7471/ikeee.2013.17.3.234
  9. Y. Chae, K. Souri and K. Makinwa, "A $6.3{\mu}W$ 20 bit Incremental Zoom-ADC with 6 ppm INL and $1{\mu}V$ Offset," IEEE Journal of Solid-State Circuits, vol. 48, no. 12, pp. 3019-3027, 2013. DOI: 10.1109/JSSC.2013.2278737
  10. B. Gonen, F. Sebastino, R. Quan, R. Veldhoven, and K. Makinwa, "A Dynamic Zoom ADC with 109-dB DR for Audio Applications," IEEE Journal of Solid-State Circuits, vol. 52, no. 6, pp. 1542-1550, 2017. DOI: 10.1109/JSSC.2017.2669022
  11. S. Karmakar, B. Gönen, F. Sebastino, R. Veldhoven, and K. Makinwa, "A $280{\mu}W$ dynamic-zoom ADC with 120dB DR and 118dB SNDR in 1kHz BW," in Proc. of IEEE International Solid-State Circuits Conference, pp. 238-240, 2018.DOI: 10.1109/ISSCC.2018.8310272
  12. Texas Instruments, "Continuous-Time Sigma-Delta ADCs," http://www.ti.com/lit/an/snaa098/snaa098.pdf
  13. A. Hart and S. Voinigescu, "A 1 GHz Bandwidth Low-Pass Delta-Sigma ADC With 20-50 GHz Adjustable Sampling Rate," IEEE Journal of Solid-State Circuits, vol. 44, no. 5, pp. 1401-1414, 2009.DOI: 10.1109/JSSC.2009.2015852
  14. C. Weng, T. Wei, E. Alpman, C. Fu, and T. Lin, "A Continuous-Time Delta-Sigma Modulator Using ELD-Compensation-Embedded SAB and DWA-Inherent Time-Domain Quantizer," IEEE Journal of Solid-State Circuits, vol. 51, no. 5, pp. 1235-1245, 2016.DOI: 10.1109/JSSC.2016.2532345
  15. A. Sukumaran and S. Pavan, "Design of Continuous-Time Delta-Sigma Modulators With Dual Switched-Capacitor Return-to-Zero DACs," IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1619-1629, 2016.DOI: 10.1109/JSSC.2016.2542200
  16. B. Ginsburg and A. Chandrakasan, "500-MS/s 5-bit ADC in 65-nm CMOS With Split Capacitor Array DAC," IEEE Journal of Solid-State Circuits, vol. 42, no. 4, pp. 739-747, 2007.DOI: 10.1109/JSSC.2007.892169
  17. M. Kim, Y. Kim, Y. Kwak, and G. Ahn, "A 12-bit 200-kS/s SAR ADC with hybrid RC DAC," in Proc. of IEEE Asia Pacific Conference on Circuits and Systems, pp. 185-188, 2014. DOI: 10.1109/APCCAS.2014.7032752
  18. A. AlMarashli, J. Anders, J. Becker, and M. Ortmanns, "A Nyquist Rate SAR ADC Employing Incremental Sigma Delta DAC Achieving Peak SFDR = 107 dB at 80 kS/s," IEEE Journal of Solid-State Circuits, vol. 53, no. 5, pp. 1493-1507, 2018. DOI: 10.1109/JSSC.2017.2776299
  19. J. McNeill, K. Chan, M. Coln, C. David, and C. Brenneman, "All-digital background calibration of a successive approximation ADC using the 'Split ADC' architecture," IEEE Trans. Circuits Syst. I, vol. 58, no. 10, pp. 2355-2365 2011. DOI: 10.1109/TCSI.2011.2123590
  20. J. Shen, A. Shikata, L. Fernando, N. Guthrie, B. Chen, M. Maddox, N. Mascarenhas, R. Kapusta, and M. Coln, "A 16-bit 16-MS/s SAR ADC With On-Chip Calibration in 55-nm CMOS," IEEE Journal of Solid-State Circuits, vol. 53, no. 4, pp. 1149-1160, 2018.DOI: 10.1109/JSSC.2017.2784761