DOI QR코드

DOI QR Code

Performance Evaluation of the Tumor Tracking Method Using Beam on/off Interface for the Treatment of Irregular Breathing

호흡이 불규칙한 환자의 치료를 위한 Beam on/off Interface를 이용한 종양 추적 치료 방법의 성능 평가

  • Lee, Minsik (Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine)
  • 이민식 (울산대학교 의과대학 서울아산병원 방사선종양학과)
  • Received : 2018.05.30
  • Accepted : 2018.06.30
  • Published : 2018.06.30

Abstract

Dose rate regulated tracking is known to be an efficient method which adaptively delivers tracking treatments when patient breathing is irregular. The Motion Management Interface (MMI, Varian Medical System, CA), which provides beam on/off switching during treatment is available for clinic. Study is to test if delivering the adaptive tumor tracking is feasible for irregular breathing using beam switching with MMI. 55 free breathing RPM traces acquired from lung cancer patients are used. The first day RPM traces of the patients are utilized to design preprogrammed tracking MLC patterns, of which periods are intentionally reduced by 20% in order to catch up the variation of patient breathing irregularity in the treatment day. Eligibility criteria for this technique are the variation of amplitude and period less than 20%. An algorithm which determines beam on/off every 100 ms by considering the preprogrammed (MLC) positions and current breathing positions is developed. Tracking error and delivery efficacy are calculated by simulating the beam-switching adaptive tracking from the RPM traces. Breathing patterns of 38 patients (70%) met the eligibility criteria. Tracking errors of all of the cases who meet the criteria are less than 2 mm (average 1.4 mm) and the average delivery efficacy was 71%. Those of rest of the cases are 1.9 mm and 48%. Adaptive tracking with beam switching is feasible if patient selection is based on the eligibility criteria.

선량률을 조절하면서 종양을 추적하는 방법은 호흡이 불규칙한 환자를 치료할 때 방사선을 적응적으로 전달하는 효율적인 방법으로 알려져 있다. 이 연구에서는 빔 켜기/끄기 스위칭을 제공하는 모션 관리 인터페이스 (MMI, Varian Medical System, CA)를 이용한 불규칙 호흡에 대해 적응성 종양 추적을 시행 할 수 있는지 확인하였다. 폐암 환자로부터 획득한 55개의 호흡 정보를 사용하였다. 첫날 환자의 RPM 흔적을 사용하여 사전 프로그래밍 된 추적 MLC 패턴을 디자인하는데, 치료 기간 중 환자의 호흡 불규칙성의 변화를 따라 잡기 위해 기간을 의도적으로 20% 줄였다. 이 기술의 적정성 기준은 진폭 및 주기의 20 % 미만의 표준편차이다. 사전 프로그래밍 된 MLC 위치와 현재 호흡 위치를 고려하여 100 ms마다 빔 켜기 / 끄기를 결정하는 알고리즘이 개발되었다. 추적 오류 및 전달 효율성은 RPM 추적에서 빔 스위칭 적응형 추적을 시뮬레이션하여 계산되었다. 38 명의 환자(70%)의 호흡 양상이 적합 기준을 충족 시켰습니다. 기준을 충족하는 모든 사례의 추적 오류는 2 mm 미만 (평균 1.4 mm)이며 평균 전달 효능은 71 % 였다. 기준을 충족하지 못한, 나머지 경우의 추적오류와 전달 효율은 1.9 mm와 48% 였다. 본 연구를 통해, 환자 선택이 적격 기준을 기반으로 하는 경우 빔 스위칭을 통한 적응형 추적 치료가 가능한 것을 확인하였다.

Keywords

References

  1. S. B. Jiang, “Technical aspects of image-guided respiration-gated radiation therapy,” Medical dosimetry, Vol. 31, No. 2, pp. 141-151, 2006. https://doi.org/10.1016/j.meddos.2005.12.005
  2. P. J. Keall, H. Cattell, D. Pokhrel, S. Dieterich, K. H. Wong, M. J. Murphy, S. S. Vedam, K. Wijesooriya, R. Mohan, “Geometric accuracy of a real-time target tracking system with dynamic multileaf collimator tracking system,” International Journal of Radiation Oncology Biology Physics, Vol. 65, No. 5, pp. 1579-1584, 2006. https://doi.org/10.1016/j.ijrobp.2006.04.038
  3. C. Shi, N. Papanikolaou, "Tracking versus Gating in the Treatment of Moving Targets," European Oncological Disease, No. 1, pp. 83-86, 2007.
  4. B. Yi, S. Oh, B. Berman, F. Lerma, C. Yu, “Real-time tumor tracking with preprogrammed dynamic multileaf collimator motion and adaptive dose-rate regulation,” Medical Physics, Vol. 35, No. 9, pp. 3955-4017, 2008. https://doi.org/10.1118/1.2965261
  5. L. Papiez, R. Abolfath, “Variable beam dose rate and DMLC IMRT to moving body anatomy,” Medical Physics, Vol. 35, No. 11, pp. 4837-4885, 2008. https://doi.org/10.1118/1.2977822
  6. P. J. Keall, G. S. Mageras, J. M. Balter, R. S. Emery, K. M. Forster, S. B. Jiang, J. M. Kapatoes, D. A. Low, M. J. Murphy, B. R. Murray, C. R. Ramsey, M. Herk, S. Vedam, J. Wong, E. Yorke, “The management of respiratory motion in radiation oncology report of AAPM Task Group 76,” Medical Physics, Vol. 33, No. 10, pp. 3874-4774, 2006. https://doi.org/10.1118/1.2349696
  7. H. Kubo, B. C. Hill, “Respiration gated radiotherapy treatment: a technical study,” Physics in Medicine and Biology, Vol. 41, No. 1, pp. 83-91, 1996. https://doi.org/10.1088/0031-9155/41/1/007
  8. D. Mah, J. Hanley, K. E. Rosenzweig, E. Yorke, L. Braban, C. C. Ling, S. A. Leibel, G. Mageras, “Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer,” International Journal of Radiation Oncology Biology Physics, Vol. 48, No. 4, pp. 1175–1185, 2000. https://doi.org/10.1016/S0360-3016(00)00747-1
  9. V. M. Remouchamps, F. A. Vicini, M. B. Sharpe, L. L. Kestin, A. A. Martinez, J. W. Wong, "Significant reductions in heart and lung doses using deep inspiration breath hold with active breathing control and intensity-modulated radiation therapy for patients treated with locoregional breast irradiation," International Journal of Radiation Oncology Biology Physics. Vol. 55, No. 2, pp. 392-406, 2003. https://doi.org/10.1016/S0360-3016(02)04143-3
  10. I. Buzurovic, K. Huang, Y. Yu, T. K. Podder, "A robotic approach to 4D real-time tumor tracking for radiotherapy," Physics in Medicine and Biology, Vol. 56, pp. 1299-1318, 2011. https://doi.org/10.1088/0031-9155/56/5/005
  11. S. Oh, B. Yi, F. Lerma, B. Berman, M. Gui, C. Yu, “Verification of MLC based real-time tumor tracking using an electronic portal imaging device,” Medical Physics, Vol. 37, No. 6, pp. 2435-2440, 2010. https://doi.org/10.1118/1.3425789
  12. A. Sawant, R. L. Smith, R. B. Venkat, L. Santanam, B. Cho, P. Poulsen, H. Cattell, L. J. Newell, P. Parikh and P. J. Keall, “Toward submillimeter accuracy in the management of intrafraction motion: the integration of real-time internal position monitoring and multileaf collimator target tracking,” International Journal of Radiation Oncology*Biology*Physics, Vol. 74, No. 2, pp. 575-582, 2009. https://doi.org/10.1016/j.ijrobp.2008.12.057
  13. S. Oh, B. Yi, B. L. Berman, F. Lerma, C, Yu, "Accuracy of dose-rate-regulated tracking: a parametric study," Physics in Medicine and Biology, Vol. 55, pp. 1-13, 2010. https://doi.org/10.1088/0031-9155/55/1/001
  14. Varian Medical Systems, Clinac 3rd Party External System Interface: Version 2, December 2005.