DOI QR코드

DOI QR Code

Characterization of Reverse Osmosis Membrane Surface Modified by Silane-epoxy Using UV

UV를 적용한 역삼투막의 실란-에폭시 표면 개질 및 특성 평가

  • Park, Hee Min (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Yang, Won Yong (Department of Chemical Engineering, College of Engineering, Kyung Hee University) ;
  • Lee, Yong Taek (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
  • 박희민 (경희대학교 공과대학 화학공학과) ;
  • 양원용 (경희대학교 공과대학 화학공학과) ;
  • 이용택 (경희대학교 공과대학 화학공학과)
  • Received : 2018.06.08
  • Accepted : 2018.06.29
  • Published : 2018.06.30

Abstract

The purposes of this paper were to improve both fouling and chlorine resistance by increasing the hydrophilicity of the reverse osmosis membrane. In order to improve chlorine resistance, the surface of RO membrane was activated by ultraviolet irradiation, and then it was modified by the sol-gel method using Octyltriethoxysilane (OcTES) such as the silane coupling agent to low sensitivity to chlorine, thereby the polyamide active layer was protected and chlorine resistance was improved. In addition, polyglycerol polyglycidyl ether (PGPE) and sorbitol polyglycidyl ether (SPE) coating with different number of epoxides, ring opening reaction of epoxide improved the anti-fouling resistance. The surface modification condition was optimized by FT-IR, XPS, and contact angle analysis. As a result, the permeability reduction rate of the silane-epoxy modified membrane after the fouling test was decreased about 1.5 times as compared with that of the commercial membrane. And the salt rejection was maintained over 90% at $20,000ppm{\times}hr$ even after chlorine resistance test.

본 연구는 역삼투막의 물리-화학적 표면 개질을 통하여 친수성 증가에 따른 내오염성 및 내염소성을 향상하고자 하였다. 자외선조사로 상용막 표면을 활성화한 후 실란 커플링제를 sol-gel법으로 개질하여 염소에 대한 민감도를 낮춰 폴리아마이드 활성층을 보호하여 내염소성을 향상시켰다. 또한, 에폭사이드의 개수가 다른 PGPE, SPE 두 종류의 에폭시로 코팅 후 에폭사이드의 개환반응으로 내오염성을 향상시켰으며, 표면 개질 조건은 접촉각과 FT-IR, XPS 분석을 통해 최적화하였다. 실란-에폭시 개질막의 오염성 평가 결과 투과도 감소율이 상용막보다 약 1.5배 감소하였고, 내염소성 평가 결과 $20,000ppm{\times}hr$에서도 염제거율이 90% 이상 유지되었다.

Keywords

References

  1. R. W. Baker, "Membrane technology and applications" 2nd edition, Wiley (2004).
  2. D. Li and H. Wang, "Recent developments in reverse osmosis desalination membranes", J. Mater. Chem., 20, 4551 (2010). https://doi.org/10.1039/b924553g
  3. L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, "Reverse osmosis desalination: Water sources, technology, and today's challenges", Water Research, 43, 2317 (2009). https://doi.org/10.1016/j.watres.2009.03.010
  4. G.-R. Xu, J.-N. Wang, and C.-J. Li, "Strategies for improving the performance of the PA thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations", Desalination, 328, 83 (2013). https://doi.org/10.1016/j.desal.2013.08.022
  5. S. H. Son and J. Jegal, "Preparation and characterization of polyamide thin film composite reverse osmosis membranes using hydrophilic treated microporous supports", Membr. J., 24, 317 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.4.317
  6. D. H. Shin, N. Kim, and Y. T. Lee, "Modification to the polyamide tfc ro membranes for improvement of chlorine-resistance", J. Membr. Sci., 376, 302 (2011). https://doi.org/10.1016/j.memsci.2011.04.045
  7. J. Glater, S. K. Hong, and M. Elimelech, "The search for a chlorine-resistant reverse osmosis membrane", Desalination, 95, 325 (1994). https://doi.org/10.1016/0011-9164(94)00068-9
  8. E. M. Vrijenhoeka, S. K. Hong, and M. Elimelech, "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes", J. Membr. Sci., 188, 115 (2001). https://doi.org/10.1016/S0376-7388(01)00376-3
  9. R. Singh, "Characteristics of a chlorine-resistant reverse osmosis membrane", Desalination, 95, 27 (1994). https://doi.org/10.1016/0011-9164(94)00004-2
  10. J. S. Louie, I. Pinnau, I. Ciobanu, K. P. Ishida, A. Ng, and M. Reinhard, "Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes", J. Membr. Sci., 280, 762 (2006). https://doi.org/10.1016/j.memsci.2006.02.041
  11. Y. Baek, H. J. Kim, S.-H. Kim, J.-C. Lee, and J. Yoon, "Evaluation of carbon nanotube-polyamide thin-film nanocomposite reverse osmosis membrane: Surface properties, performance characteristics and fouling behavior", J. IND. ENG. CHEM., 56, 327 (2017). https://doi.org/10.1016/j.jiec.2017.07.028
  12. A. Akbari, Z. Derikvandi, and S. M. Mojallali Rostami, "Influence of chitosan coating on the separation performance, morphology and anti-fouling properties of the polyamide nanofiltration membranes", J. IND. ENG. CHEM., 28, 268 (2015). https://doi.org/10.1016/j.jiec.2015.03.002
  13. L. Ni, J. Meng, X. Li, and Y. Zhang, "Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement", J. Membr. Sci., 451, 205 (2014). https://doi.org/10.1016/j.memsci.2013.09.040
  14. Y.-N. Kwon, S. Hong, H. Choi, and T. Tak, "Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement", J. Membr. Sci., 415, 192 (2012).
  15. S. Kwon and Y. T. Lee, "Improvement of fouling resistance with reverse osmosis membrane using multi-layer silane-epoxy surface modification", Membr. J., 25, 332 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.332
  16. Q.-H. Lu, M. Li, J. Yin, Z.-K. Zhu, and Z.-G. Wang, "Polyimide surface modification by pulsed ultraviolet laser irradiation with low fluence", Journal of Applied Polymer Science, 82, 2739 (2001). https://doi.org/10.1002/app.2126
  17. J. Yip, K. Chan, K. M. Sin, and K. S. Lau "Study on the surface chemical properties of UV excimer laser irradiated polyamide by XPS, ToF-SIMS and CFM", Applied Surface Science, 205, 151 (2003). https://doi.org/10.1016/S0169-4332(02)01015-2
  18. S. Kwon, K. Y. Jee, and Y. T. Lee, "Surface modification of reverse osmosis membrane with diphenylamine for improved chlorine and fouling resistance", Membr. J., 23, 439 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.439
  19. V. Ganesana, P. K. Rastogia, R. Guptaa, M. T. Meredithb, and S. D. Minteer, "Ion exchange voltammetry at branched polyethylenimine cross-linked with ethylene glycol diglycidyl ether and sensitive determination of ascorbic acid", Electrochimica Acta, 105, 31 (2013). https://doi.org/10.1016/j.electacta.2013.04.178
  20. T. M. Parrill and Y. W. Chung, "Surface analysis of cubic silicon carbide (001)", Surf. Sci., 243, 96 (1991). https://doi.org/10.1016/0039-6028(91)90348-V
  21. M. P. Delplancke, J. M. Powers, G.J . Vandentop, M. Salmeron, and G. A. Somorjai, "Preparation and characterization of amorphous SiC:H thin films", J. Vac. Sci. Technol. A, 9, 450 (1991). https://doi.org/10.1116/1.577431
  22. H. Iwakuro, M. Tokonami, T. Kuroda, S. Tamaki, and Y. Kitatsuji, "Interfacial layers of high-barrier schottky diode of Al/n-Type (100)Si exposed to H2 plasma", Jpn. J. Appl. Phys., 32, 5487 (1993). https://doi.org/10.1143/JJAP.32.5487
  23. S. A. Chambers and V. A. Loebs, "Structure and band bending at Si/GaAs(001)-($2{\times}4$) interfaces", Phys. Rev. B, 47, 9513 (1993). https://doi.org/10.1103/PhysRevB.47.9513
  24. P. Laoharojanaphand, T. J. Lin, and J. O. Stoffer, "Glow discharge polymerization of reactive functional silanes on poly(methyl methacrylate)", J. Appl. Polymer Sci., 40, 369 (1990). https://doi.org/10.1002/app.1990.070400306
  25. Z. Yang, X. F. Peng, M.-Y. Chen, D.-J. Lee, and J. Y. Lai, "Intra-layer flow in fouling layer on membranes", J. Membr. Sci., 287, 280 (2007). https://doi.org/10.1016/j.memsci.2006.10.051
  26. A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, and K. Kuroda, "Self-assembly of designed oligomeric siloxanes with alkyl chains into silica-based hybrid mesostructures", J. AM. CHEM. SOC., 127, 14108 (2005). https://doi.org/10.1021/ja0541736
  27. L. Zoua, I. Vidalis, D. Steele, A. Michelmore, S. P. Low, and J. Q. J. C. Verberk, "Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling", J. Membr. Sci., 369, 420 (2011). https://doi.org/10.1016/j.memsci.2010.12.023
  28. M. Hirose, H. Ito, and Y. Kamiyama, "Effect of skin layer surface structures on the flux behavior of RO membranes", J. Membr. Sci., 121, 209 (1996). https://doi.org/10.1016/S0376-7388(96)00181-0
  29. X. Song, J. Zhai, Y. Wang, and L. Jiang, "Fabrication of Superhydrophobic Surfaces by Self-Assembly and Their Water-Adhesion Properties", J. Phys. Chem. B, 109, 4048 (2005). https://doi.org/10.1021/jp045152l
  30. S. Avlonitis, W. T. Hanbury, and T. Hodgkiess, "Chlorine degradation of aromatic polyamidess", Desalination, 85, 321 (1992). https://doi.org/10.1016/0011-9164(92)80014-Z
  31. J. Glater, S. Hong, and M. Elimelech, "The search for a chlorine-resistant reverse osmosis membrane", Desalination, 95, 325 (1994). https://doi.org/10.1016/0011-9164(94)00068-9