DOI QR코드

DOI QR Code

Phytochemical-based Tannic Acid Derivatives as Draw Solutes for Forward Osmosis Process

정삼투 공정의 유도용질로서의 식물 화학물질 기반의 탄닌산 유도체

  • Kim, Taehyung (Department of Chemical Engineering, Dong-A University) ;
  • Ju, Changha (Department of Chemical Engineering, Dong-A University) ;
  • Kang, Hyo (Department of Chemical Engineering, Dong-A University)
  • 김태형 (동아대학교 화학공학과) ;
  • 주창하 (동아대학교 화학공학과) ;
  • 강효 (동아대학교 화학공학과)
  • Received : 2018.06.25
  • Accepted : 2018.06.28
  • Published : 2018.06.30

Abstract

Potassium tannate (TA-K), which is prepared by base treatment of the bio-renewable tannic acid (TA), was evaluated for its potential application as a draw solute for water purification by forward osmosis. The forward osmosis and recovery properties of TA-K were systematically investigated. In the application of forward osmosis through the active layer facing feed solution (AL-FS) method, the water flux of TA-K draw solution was significantly higher than that of the TA draw solution, while that of the latter was not identified. At a low concentration of 100 mM, the osmotic pressure (1,135 mOsmol/kg) of the TA-K draw solution was approximately 6.5 times that (173 mOsmol/kg) of the NaCl draw solution. Furthermore, the water flux and specific salt flux (6.14 LMH, 1.26 g/L) of the TA-K draw solution at 100 mM were approximately 2.5 and 0.5 times those of the NaCl draw solution (2.46 LMH, 2.63 g/L) at the same concentration, respectively. For reuse, TA-K was precipitated by using a metal ion and recovered through membrane filtration. This study demonstrates the applicability of a phytochemical material as a draw solute for forward osmosis.

우리는 정삼투 공정의 유도용질로서 잠재적인 활용 가능성을 확인하기 위해 식물화학물질인 tannic acid (TA)에 알칼리 염 처리한 alkali tannate 염 중 하나인 potassium tannate (TA-K)를 평가하였다. TA-K의 정삼투 특성과 회수 특성은 체계적으로 조사되었다. 정삼투 공정을 active layer facing feed solution (AL-FS) 방식으로 적용했을 때, TA-K 유도용액의 투수량은 TA 유도용액의 투수량 보다 훨씬 많은 반면, TA 유도용액의 투수량이 거의 확인되지 않았다. 100 mM 저농도에서의 TA-K 유도용액의 삼투압(1,135 mOsmol/kg)은 NaCl 수용액의 삼투압(173 mOsmol/kg)의 약 6.5배로 확인되었다. 100 mM 농도의 TA-K의 투수량과 specific salt flux (6.14 LMH, 1.26 g/L)는 동일한 농도의 NaCl 유도용액의 투수량과 specific salt flux (2.46 LMH, 2.63 g/L)의 약 2.5배 및 0.5배로 각각 확인되었다. TA-K를 재사용하기 위해, 금속 이온 침전법을 이용하여 TA-K유도용질을 침전시킨 후, membrane filtration을 이용하여 유도용질을 회수하였다. 이 연구는 식물화학물질을 정삼투 공정의 유도용질로서의 적용 가능성을 보여준다.

Keywords

References

  1. N. Akther, A. Sodiq, A. Giwa, S. Daer, H. A. Arafat, and S. W. Hasan, "Recent advancements in forward osmosis desalination: A review", Chem. Eng. J., 281, 502 (2015). https://doi.org/10.1016/j.cej.2015.05.080
  2. M. Wilf, "Future of the osmotic processes", Desalin. Water Treat., 15, 292 (2010). https://doi.org/10.5004/dwt.2010.1761
  3. L. Chekli, S. Phuntsho, H. K. Shon, S. Vigneswaran, J. Kandasamy, and A. Chanan, "A review of draw solutes in forward osmosis process and their use in modern applications", Desalin. Water Treat., 43, 167 (2012). https://doi.org/10.1080/19443994.2012.672168
  4. Q. C. Ge, M. M. Ling, and T. S. Chung, "Draw solutions for forward osmosis processes: developments, challenges, and prospects for the future", J. Membrane Sci., 442, 225 (2013). https://doi.org/10.1016/j.memsci.2013.03.046
  5. B.-M. Jun, S.-W. Han, Y.-K. Kim, N. T. P. Nga, H.-G. Park, and Y.-N. Kwon, "Conditions for ideal draw solutes and current research trends in the draw solutes for forward osmosis process", Membr. J., 25, 132 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.2.132
  6. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  7. R. E. Kravath and J. A. Davis, "Desalination of sea water by direct osmosis", Desalination, 16, 151 (1975). https://doi.org/10.1016/S0011-9164(00)82089-5
  8. J. O. Kessler and C. D. Moody, "Drinking water from sea water by forward osmosis", Desalination, 18, 297 (1976). https://doi.org/10.1016/S0011-9164(00)84119-3
  9. S. Phuntsho, H. K. Shon, S. Hong, S. Lee, and S. Vigneswaran, "A novel low energy fertilizer driven forward osmosis desalination for direct fertigation: Evaluating the performance of fertilizer draw solutions", J. Membr. Sci., 375, 172 (2011). https://doi.org/10.1016/j.memsci.2011.03.038
  10. J. R. McCutcheon, R. L. McGinnis, and M. Elimelech, "A novel ammonia-carbon dioxide forward (direct) osmosis desalination process", Desalination, 174, 1 (2005). https://doi.org/10.1016/j.desal.2004.11.002
  11. G. W. Batchelder, "Process for the demineralization of water", US Patent 3,171,799, March 2 (1965).
  12. H. Luo, Q. Wang, T. C. Zhang, T. Tao, A. Zhou, L. Chen, and X. Bie, "A review on the recovery methods of draw solutes in forward osmosis", J. Water Process Eng., 4, 212 (2014). https://doi.org/10.1016/j.jwpe.2014.10.006
  13. Z. Wei, Q. Yu, and Z. Gan, "Thermosensitive block copolymers PEG-b-PBEMAGG containing functional pendant amino groups", Macromol. Res., 20, 313 (2012). https://doi.org/10.1007/s13233-012-0060-z
  14. T. Maeda, Y. Akasaki, K. Yamamoto, and T. Aoyagi, "Stimuli-responsive coacervate induced in binary functionalized poly(N-isopropylacrylamide) aqueous system and novel method for preparing semi-IPN microgel using the coacervate", Langmuir, 25, 9510 (2009). https://doi.org/10.1021/la9007735
  15. K. Soppimath, T. Aminabhavi, A. Dave, S. Kumbar, and W. Rudzinski, "Stimulus-responsive "Smart" hydrogels as novel drug delivery systems", Drug Dev. Ind. Pharm., 28, 957 (2002). https://doi.org/10.1081/DDC-120006428
  16. J. Kim, H. Kang, Y.-S. Choi, Y. A. Yu, and J.-C. Lee, "Thermo-responsive oligomeric poly(tetrabutylphosphonium styrenesulfonate)s as draw solutes for forward osmosis (FO) applications", Desalination, 381, 84 (2016). https://doi.org/10.1016/j.desal.2015.11.013
  17. Y. Zhong, X. Feng, W. Chen, X. Wang, K.-W. Huang, Y. Gnanou, and Z. Lai, "Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water", Environ. Sci. Technol., 50, 1039 (2016). https://doi.org/10.1021/acs.est.5b03747
  18. J. Kim, J. S. Chung, H. Kang, Y. A. Yu, W. J. Choi, H. J. Kim, and J.-C. Lee, "Thermo-responsive copolymers with ionic group as novel draw solutes for forward osmosis processes", Macromol. Res., 22, 963 (2014). https://doi.org/10.1007/s13233-014-2142-6
  19. D. Li, X. Zhang, J. Yao, G. P. Simon, and H. Wang, "Stimuli-responsive polymer hydrogels as a new class of draw agent for forward osmosis desalination", Chem. Commun., 47, 1710 (2011). https://doi.org/10.1039/c0cc04701e
  20. H. W. Bai, Z. Y. Liu, and D. D. Sun, "Highly water soluble and recovered dextran coated $Fe_3O_4$ magnetic nanoparticles for brackish water desalination", Sep. Purif. Technol., 81, 392 (2011). https://doi.org/10.1016/j.seppur.2011.08.007
  21. Q. C. Ge, J. C. Su, T.-S. Chung, and G. Amy, "Hydrophilic superparamagnetic nanoparticles: synthesis, characterization, and performance in forward osmosis processes", Ind. Eng. Chem. Res., 50, 382 (2011). https://doi.org/10.1021/ie101013w
  22. M. M. Ling, K. Y. Wang, and T.-S. Chung, "Highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis for water reuse", Ind. Eng. Chem. Res., 49, 5869 (2010). https://doi.org/10.1021/ie100438x
  23. P. Dey and E. L. Izake, "Magnetic nanoparticles boosting the osmotic efficiency of a polymeric FO draw agent: Effect of polymer conformation", Desalination, 373, 79 (2015). https://doi.org/10.1016/j.desal.2015.07.010
  24. W. T. Hough, "Forward-osmosis solvent extraction", US Patent 3,721,621, March 20 (1973).
  25. B. S. Frank, "Desalination of sea water", US Patent 3,670,897, June 20 (1972).
  26. M. L. Stone, C. Rae, F. F. Stewart, and A. D. Wilson, "Switchable polarity solvents as draw solutes for forward osmosis", Desalination, 312, 124 (2013). https://doi.org/10.1016/j.desal.2012.07.034
  27. Q. Ge, J. Su, G. L. Amy, and T.-S. Chung, "Exploration of polyelectrolytes as draw solutes in forward osmosis processes", Water Res., 46, 1318 (2012). https://doi.org/10.1016/j.watres.2011.12.043
  28. E. Tian, C. Hu, Y. Qin, Y. Ren, X. Wang, X. Wang, P. Xiao, and X. Yang, "A study of poly(sodium 4-styrenesulfonate) as draw solute in forward osmosis", Desalination, 360, 130 (2015). https://doi.org/10.1016/j.desal.2015.01.001
  29. S. Adham, J. Oppenheimer, L. Liu, and M. Kumar, "Dewatering reverse osmosis concentrate from water reuse applications using forward osmosis", Water Reuse Foundation, Alexandria (2007).
  30. A. Achilli, T. Y. Cath, and A. E. Childress, "Selection of inorganic-based draw solutions for forward osmosis applications", J. Membr. Sci., 364, 233 (2010). https://doi.org/10.1016/j.memsci.2010.08.010
  31. Q. Ge and T.-S. Chung, "Oxalic acid complexes: promising draw solutes for forward osmosis (FO) in protein enrichment", Chem. Commun., 51, 4854 (2015). https://doi.org/10.1039/C5CC00168D
  32. Y. T. Zhao, Y. W. Ren, X. Z. Wang, P. Xiao, E. L. Tian, X. Wang, and J. Li, "An initial study of EDTA complex based draw solutes in forward osmosis process", Desalination, 378, 28 (2016). https://doi.org/10.1016/j.desal.2015.09.006
  33. A. Razmjou, M. R. Barati, G. P. Simon, K. Suzuki, and H. T. Wang, "Fast deswelling of nanocomposite polymer hydrogels via magnetic field-induced heating for emerging FO desalination", Environ. Sci. Technol., 47, 6297 (2013). https://doi.org/10.1021/es4005152
  34. S. K. Yen, M. Su, K. Y. Wang, and T.-S. Chung, "Study of draw solutes using 2-methylimidazole-based compounds in forward osmosis", J. Membr. Sci., 364, 242 (2010). https://doi.org/10.1016/j.memsci.2010.08.021
  35. M. N. Belgacem and A. Gandini, "Monomers, polymers and composites from renewable resources, Elsevier, Amsterdam (2011).
  36. K. Khanbabaee and T. van Ree, "Tannins: Classification and definition", Nat. Prod. Rep., 18, 641 (2001). https://doi.org/10.1039/b101061l
  37. V. L. Singleton, "Naturally occurring food toxicants: Phenolic substances of plant origin common in foods", Adv. Food Res., 27, 149 (1981).
  38. M. C. Figueroa-Espinoza, A. Zafimahova, P. G. M. Alvarado, E. Dubreucq, and C. Poncet-Legrand, "Grape seed and apple tannins: Emulsifying and antioxidant properties", Food Chem., 178, 38 (2015). https://doi.org/10.1016/j.foodchem.2015.01.056
  39. K.-T. Chung, S. E. Stevens Jr, W.-F. Lin, and C. I. Wei, "Growth inhibition of selected food-borne bacteria by tannic acid, propyl gallate and related compounds", Lett. Appl. Microbiol., 17, 29 (1993). https://doi.org/10.1111/j.1472-765X.1993.tb01428.x
  40. K.-T. Chung, G. Zhao, E. Stevens Jr, B. A. Simco, and C. I. Wei, "Growth inhibition of selected aquatic bacteria by tannic acid and related compounds", J. Aquat. Anim. Health, 7, 46 (1995). https://doi.org/10.1577/1548-8667(1995)007<0046:GIOSAB>2.3.CO;2
  41. E. M. Daniel and G. D. Stoner, "The effects of ellagic acid and 13-cis-retinoic acid on N-nitrosobenzylmethylamine-induced esophageal tumorigenesis in rats", Cancer Lett., 56, 117 (1991). https://doi.org/10.1016/0304-3835(91)90085-V
  42. I. Gulcin, Z. Huyut, M. Elmastas, and H. Y. Aboul-Enein, "Radical scavenging and antioxidant activity of tannic acid", Arabian J. Chem., 3, 43 (2010). https://doi.org/10.1016/j.arabjc.2009.12.008
  43. C. A. Rice-Evans, N. J. Miller, and G. Paganga, "Structure-antioxidant activity relationships of flavonoids and phenolic acids", Free Radical Biol. Med., 20, 933 (1996). https://doi.org/10.1016/0891-5849(95)02227-9
  44. J. S. Wright, E. R. Johnson, and G. A. DiLabio, "Predicting the activity of phenolic antioxidants: Theoretical method, analysis of substituent effects, and application to major families of antioxidants", J. Am. Chem. Soc., 123, 1173 (2001). https://doi.org/10.1021/ja002455u
  45. B. Badhani, N. Sharma, and R. Kakkar, "Gallic acid: A versatile antioxidant with promising therapeutic and industrial applications", RSC Adv., 5, 27540 (2015). https://doi.org/10.1039/C5RA01911G
  46. J. Iglesias, E. G. De Saldaña, and J. Jaen, "On the tannic acid interaction with metallic iron", Hyperfine Interact., 134, 109 (2001). https://doi.org/10.1023/A:1013838600599
  47. Z. Xia, A. Singh, W. Kiratitanavit, R. Mosurkal, J. Kumar, and R. Nagarajan, "Unraveling the mechanism of thermal and thermo-oxidative degradation of tannic acid", Thermochim. Acta, 605, 77 (2015). https://doi.org/10.1016/j.tca.2015.02.016
  48. M. Ozacar, C. Soykan, and I. A. Sengil, "Studies on synthesis, characterization, and metal adsorption of mimosa and valonia tannin resins", J. Appl. Polym. Sci., 102, 786 (2006). https://doi.org/10.1002/app.23944
  49. Q. Ge, P. Wang, C. Wan, and T.-S. Chung, "Polyelectrolyte-promoted forward osmosis-membrane distillation (FO-MD) hybrid process for dye wastewater treatment", Environ. Sci. Technol., 46, 6236 (2012). https://doi.org/10.1021/es300784h
  50. W. D. Kemper and N. A. Evans, "Movement of water as effected by free energy and pressure gradients III. restriction of solutes by membranes", Soil Sci. Soc. Am. J., 27, 485 (1963). https://doi.org/10.2136/sssaj1963.03615995002700050007x
  51. N. T. Hancock and T. Y. Cath, "Solute coupled diffusion in osmotically driven membrane processes", Environ. Sci. Technol., 43, 6769 (2009). https://doi.org/10.1021/es901132x
  52. W. A. Phillip, J. S. Yong, and M. Elimelech, "Reverse draw solute permeation in forward osmosis: modeling and experiments", Environ. Sci. Technol., 44, 5170 (2010). https://doi.org/10.1021/es100901n
  53. T. K. Ross and R. A. Francis, "The treatment of rusted steel with mimosa tannin", Corros. Sci., 18, 351 (1978). https://doi.org/10.1016/S0010-938X(78)80049-3
  54. F. Paiva-Martins and M. H. Gordon, "Interactions of ferric ions with olive oil phenolic compounds", J. Agric. Food Chem., 53, 2704 (2005). https://doi.org/10.1021/jf0481094
  55. P. Kraal, B. Jansen, K. G. J. Nierop, and J. M. Verstraten, "Copper complexation by tannic acid in aqueous solution", Chemosphere, 65, 2193 (2006). https://doi.org/10.1016/j.chemosphere.2006.05.058