References
-
Carre G, Hamon E, Ennahar S, Estner M, Lett MC, Horvatovich P, et al. 2014.
$TiO_2$ photocatalysis damages lipids and proteins in Escherichia coli. Appl. Environ. Microbiol. 80: 2573-2581. https://doi.org/10.1128/AEM.03995-13 -
Lin YJ, Li DQ, Wang G, Huang L, Duan X. 2005. Preparation and bactericidal property of MgO nanoparticles on gamma-
$Al_2O_3$ . J. Mater. Sci. Mater. Med. 16: 53-56. https://doi.org/10.1007/s10856-005-6446-0 - Kim S, Sin H, Lee S, Lee I. 2013. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J. Microbiol. Biotechnol. 23: 1279-1286. https://doi.org/10.4014/jmb.1304.04084
- Lee S, Kim S, Kim S, Lee I. 2012. Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J. Microbiol. Biotechnol. 22: 1264-1270. https://doi.org/10.4014/jmb.1203.03004
- Li M, Li G, Fan Y, Jiang J, Ding Q, Dai X, et al. 2014. Effect of nano-ZnO-supported 13X zeolite on photo-oxidation degradation and antimicrobial properties of polypropylene random copolymer. Polym. Bull. 71: 2981-2997. https://doi.org/10.1007/s00289-014-1236-9
-
Seven O, Dindar B, Aydemir S, Metin D, Ozinel MA, Icli S. 2004. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with
$TiO_2$ , ZnO and Sahara desert dust. J. Photochem. Photobiol. A Chem. 165: 103-107. https://doi.org/10.1016/j.jphotochem.2004.03.005 - Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY. 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Appl. Catal. B Environ. 98: 27-38. https://doi.org/10.1016/j.apcatb.2010.05.001
- George L, Sappati S, Ghosh P, Devi RN. 2015. Surface site modulations by conjugated organic molecules to enhance visible light activity of ZnO nanostructures in photocatalytic water splitting. J. Phys. Chem. C 119: 3060-3067. https://doi.org/10.1021/jp511996z
-
Yu J, Dai G, Huang B. 2009. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/
$TiO_2$ nanotube arrays. J. Phys. Chem. C 113: 16394-16401. https://doi.org/10.1021/jp905247j -
Choi J, Park H, Hoffmann MR. 2010. Effects of single metalion doping on the visible-light photoreactivity of
$TiO_2$ . J. Phys. Chem. C 114: 783-792. https://doi.org/10.1021/jp908088x - Xia D, Shen Z, Huang G, Wang W, Yu JC, Wong PK. 2015. Red phosphorus: an earth-abundant elemental photocatalyst for "green" bacterial inactivation under visible light. Environ. Sci. Technol. 49: 6264-6273. https://doi.org/10.1021/acs.est.5b00531
- Gao P, Ng K, Sun DD. 2013. Sulfonated graphene oxide- ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light. J. Hazard. Mater. 262: 826-835. https://doi.org/10.1016/j.jhazmat.2013.09.055
-
Wang Y, Shi R, Lin J, Zhu Y. 2011. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like
$C_3N_4$ . Energy Environ. Sci. 4: 2922-2929. https://doi.org/10.1039/c0ee00825g - Zhang Y, Mori T, Ye J, Antonietti M. 2010. Phosphorusdoped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132: 6294-6295. https://doi.org/10.1021/ja101749y
- Batistela VR, Fogaça LZ, Favaro SL, Caetano W, Hioka N. 2017. ZnO supported on zeolites: photocatalyst design, microporosity and properties. Colloids Surf. A Physicochem. Eng. Asp. 513: 20-27. https://doi.org/10.1016/j.colsurfa.2016.11.023
- Posada Y. 2013. Synthesis of silver nanoclusters on zeolite substrates. Appl. Phys. 105: 126108.
-
Chen FN, Yang XD, Xu FF, Wu Q, Zhang YP. 2009. Correlation of photocatalytic bactericidal effect and organic matter degradation of
$TiO_2$ part i: observation of phenomena. Environ. Sci. Technol. 43: 1180-1184. https://doi.org/10.1021/es802499t -
Kong H, Song J, Jang J. 2010. Photocatalytic antibacterial capabilities of
$TiO_2$ -biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ. Sci. Technol. 44: 5672-5676. https://doi.org/10.1021/es1010779 - Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV. 2006. Titania and silver-titania composite films on glass - potent antimicrobial coatings. J. Mater. Chem. 17: 95-104.
-
Lin LS, Cong ZX, Li J, Ke KM, Guo SS, Yang HH, et al. 2014. Graphitic-phase
$C_3N_4$ nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J. Mater. Chem. B 2: 1031-1037. https://doi.org/10.1039/c3tb21479f -
Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. 2013. Enhanced photoresponsive ultrathin graphitic-phase
$C_3N_4$ nanosheets for bioimaging. J. Am. Chem. Soc. 135: 18-21. https://doi.org/10.1021/ja308249k - Bing W, Chen ZW, Sun HJ, Shi P, Gao N, Ren JS, et al. 2015. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res. 8: 1648-1658. https://doi.org/10.1007/s12274-014-0654-1
-
Li J, Yin Y, Liu E, Ma Y, Wan J, Fan J, et al. 2017. In situ growing
$Bi_2MoO_6$ on g-$C_3N_4$ nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J. Hazard. Mater. 321: 183-192. https://doi.org/10.1016/j.jhazmat.2016.09.008 - Chen Y, Lu A, Li Y, Zhang L, Yip HY, Zhao H, et al. 2011. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ. Sci. Technol. 45: 5689-5695. https://doi.org/10.1021/es200778p
-
Fang H, Gao Y, Li G, An J, Wong PK, Fu H, et al. 2013. Advanced oxidation kinetics and mechanism of preservative propylparaben degradation in aqueous suspension of
$TiO_2$ and risk assessment of its degradation products. Environ. Sci. Technol. 47: 2704-2712. https://doi.org/10.1021/es304898r -
Li G, Nie X, Chen J, Jiang Q, An T, Wong PK, et al. 2015. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-
$C_3N_4$ /$TiO_2$ hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 86: 17-24. https://doi.org/10.1016/j.watres.2015.05.053 -
Wang W, Ng TW, Ho WK, Huang J, Liang S, An T, et al. 2013.
$CdIn_2S_4$ microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: synthesis, characterizations and photocatalytic inactivation mechanisms. Appl. Catal. B Environ. 129: 482-490. https://doi.org/10.1016/j.apcatb.2012.09.054 -
Wang W, Yu JC, Xia D, Wong PK, Li Y. 2013. Graphene and g-
$C_3N_4$ nanosheets cowrapped elemental${alpha}$ -sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ. Sci. Technol. 47: 8724-8732. https://doi.org/10.1021/es4013504 -
Li XH, Wang X, Antonietti M. 2012. Mesoporous g-
$C_3N_4$ nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3: 2170-2174. https://doi.org/10.1039/c2sc20289a -
Adhikari SP, Pant HR, Kim JH, Kim HJ, Park CH, Kim CS. 2015. One pot synthesis and characterization of Ag-ZnO/ g-
$C_3N_4$ photocatalyst with improved photoactivity and antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 482: 477-484. https://doi.org/10.1016/j.colsurfa.2015.07.003 - Pant HR, Pant B, Han JK, Amarjargal A, Chan HP, Tijing LD, et al. 2013. A green and facile one-pot synthesis of Ag-ZnO/ rGO nanocomposite with effective photocatalytic activity for removal of organic pollutants. Ceram. Int. 39: 5083-5091. https://doi.org/10.1016/j.ceramint.2012.12.003
- Sundrarajan M, Ambika S, Bharathi K. 2015. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 26: 1294-1299. https://doi.org/10.1016/j.apt.2015.07.001
- Yang Y, Guo Y, Liu F, Yuan X, Guo Y, Zhang S, et al. 2013. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal. B Environ. 142-143: 828-837. https://doi.org/10.1016/j.apcatb.2013.06.026
- Alswat AA, Ahmad MB, Saleh TA, Hussein MZ, Ibrahim NA. 2016. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater. Sci. Eng. C 68: 505-511. https://doi.org/10.1016/j.msec.2016.06.028
-
Munoz-Batista M J, N asalevich MA, Savenije T J, K apteijn F, Gascon J, Kubacka A, et al. 2015. Enhancing promoting effects in
$g-C_3N_4-Mn^{2+}$ /$CeO_2-TiO_2$ ternary composites: photohandling of charge carriers. Appl. Catal. B Environ. 176-177: 687-698. https://doi.org/10.1016/j.apcatb.2015.04.051 -
Xiong M, Chen L, Yuan Q, He J, Luo SL, Au CT, et al. 2014. Facile fabrication and enhanced photosensitized degradation performance of the
$g-C_3N_4-Bi_2O_2CO_3$ composite. Dalton Trans. 43: 8331-8337. https://doi.org/10.1039/C4DT00486H -
Yan SC, Li ZS, Zou ZG. 2009. Photodegradation performance of g-
$C_3N_4$ fabricated by directly heating melamine. Langmuir 25: 10397-10401. https://doi.org/10.1021/la900923z -
Munoz-Batista MJ, Fontelles-Carceller O, Ferrer M, Fernandez-Garcia M, Kubacka A. 2016. Disinfection capability of Ag/g-
$C_3N_4$ composite photocatalysts under UV and visible light illumination. Appl. Catal. B Environ. 183: 86-95. https://doi.org/10.1016/j.apcatb.2015.10.024 -
Pant HR, Pant B, Sharma RK, Amarjargal A, Han JK, Chan HP, et al. 2013. Antibacterial and photocatalytic properties of Ag/
$TiO_2$ /ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceram. Int. 39: 1503-1510. https://doi.org/10.1016/j.ceramint.2012.07.097 - Pei P, Zhang K, Wen D. 2012. Comparative analysis of CFD models for jetting fluidized beds: the effect of inter-phase drag force. Powder Technol. 221: 114-122. https://doi.org/10.1016/j.powtec.2011.12.043
- Wang W, Yu Y, An T, Li G, Yip HY, Yu JC, et al. 2012. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. Environ. Sci. Technol. 46: 4599-4606. https://doi.org/10.1021/es2042977
Cited by
- Synthesis and Photocatalytic Antibacterial Properties of Poly[2,11′-thiopheneethylenethiophene-alt-2,5-(3-carboxyl)thiophene] vol.2, pp.5, 2018, https://doi.org/10.1021/acsapm.0c00109