DOI QR코드

DOI QR Code

Visible-Light-Driven Catalytic Disinfection of Staphylococcus aureus Using Sandwich Structure g-C3N4/ZnO/Stellerite Hybrid Photocatalyst

  • Zhang, Wanzhong (School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing)) ;
  • Yu, Caihong (School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing)) ;
  • Sun, Zhiming (School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing)) ;
  • Zheng, Shuilin (School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing))
  • Received : 2017.12.29
  • Accepted : 2018.04.16
  • Published : 2018.06.28

Abstract

A novel $g-C_3N_4$/ZnO/stellerite (CNZOS) hybrid photocatalyst, which was synthesized by coupled hydro thermal-thermal polymerization processing, was applied as an efficient visible-light-driven photocatalyst against Staphylococcus aureus. The optimum synthesized hybrid photocatalyst showed a sandwich structure morphology with layered $g-C_3N_4$ (doping amount: 40 wt%) deposited onto micron-sized ZnO/stellerite particles (ZnO average diameter: ~18 nm). It had a narrowing band gap (2.48 eV) and enlarged specific surface area ($23.05m^2/g$). The semiconductor heterojunction effect from ZnO to $g-C_3N_4$ leads to intensive absorption of the visible region and rapid separation of the photogenerated electron-hole pairs. In this study, CNZOS showed better photocatalytic disinfection efficiency than $g-C_3N_4/ZnO$ powders. The disinfection mechanism was systematically investigated by scavenger-quenching methods, indicating the important role of $H_2O_2$ in both systems. Furthermore, $h^+$ was demonstrated as another important radical in oxidative inactivation of the CNZOS system. In respect of the great disinfection efficiency and practicability, the CNZOS heterojunction photocatalyst may offer many disinfection applications.

Keywords

References

  1. Carre G, Hamon E, Ennahar S, Estner M, Lett MC, Horvatovich P, et al. 2014. $TiO_2$ photocatalysis damages lipids and proteins in Escherichia coli. Appl. Environ. Microbiol. 80: 2573-2581. https://doi.org/10.1128/AEM.03995-13
  2. Lin YJ, Li DQ, Wang G, Huang L, Duan X. 2005. Preparation and bactericidal property of MgO nanoparticles on gamma-$Al_2O_3$. J. Mater. Sci. Mater. Med. 16: 53-56. https://doi.org/10.1007/s10856-005-6446-0
  3. Kim S, Sin H, Lee S, Lee I. 2013. Influence of metal oxide particles on soil enzyme activity and bioaccumulation of two plants. J. Microbiol. Biotechnol. 23: 1279-1286. https://doi.org/10.4014/jmb.1304.04084
  4. Lee S, Kim S, Kim S, Lee I. 2012. Effects of soil-plant interactive system on response to exposure to ZnO nanoparticles. J. Microbiol. Biotechnol. 22: 1264-1270. https://doi.org/10.4014/jmb.1203.03004
  5. Li M, Li G, Fan Y, Jiang J, Ding Q, Dai X, et al. 2014. Effect of nano-ZnO-supported 13X zeolite on photo-oxidation degradation and antimicrobial properties of polypropylene random copolymer. Polym. Bull. 71: 2981-2997. https://doi.org/10.1007/s00289-014-1236-9
  6. Seven O, Dindar B, Aydemir S, Metin D, Ozinel MA, Icli S. 2004. Solar photocatalytic disinfection of a group of bacteria and fungi aqueous suspensions with $TiO_2$, ZnO and Sahara desert dust. J. Photochem. Photobiol. A Chem. 165: 103-107. https://doi.org/10.1016/j.jphotochem.2004.03.005
  7. Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY. 2010. A review of the mechanisms and modeling of photocatalytic disinfection. Appl. Catal. B Environ. 98: 27-38. https://doi.org/10.1016/j.apcatb.2010.05.001
  8. George L, Sappati S, Ghosh P, Devi RN. 2015. Surface site modulations by conjugated organic molecules to enhance visible light activity of ZnO nanostructures in photocatalytic water splitting. J. Phys. Chem. C 119: 3060-3067. https://doi.org/10.1021/jp511996z
  9. Yu J, Dai G, Huang B. 2009. Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/ $TiO_2$ nanotube arrays. J. Phys. Chem. C 113: 16394-16401. https://doi.org/10.1021/jp905247j
  10. Choi J, Park H, Hoffmann MR. 2010. Effects of single metalion doping on the visible-light photoreactivity of $TiO_2$. J. Phys. Chem. C 114: 783-792. https://doi.org/10.1021/jp908088x
  11. Xia D, Shen Z, Huang G, Wang W, Yu JC, Wong PK. 2015. Red phosphorus: an earth-abundant elemental photocatalyst for "green" bacterial inactivation under visible light. Environ. Sci. Technol. 49: 6264-6273. https://doi.org/10.1021/acs.est.5b00531
  12. Gao P, Ng K, Sun DD. 2013. Sulfonated graphene oxide- ZnO-Ag photocatalyst for fast photodegradation and disinfection under visible light. J. Hazard. Mater. 262: 826-835. https://doi.org/10.1016/j.jhazmat.2013.09.055
  13. Wang Y, Shi R, Lin J, Zhu Y. 2011. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like $C_3N_4$. Energy Environ. Sci. 4: 2922-2929. https://doi.org/10.1039/c0ee00825g
  14. Zhang Y, Mori T, Ye J, Antonietti M. 2010. Phosphorusdoped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J. Am. Chem. Soc. 132: 6294-6295. https://doi.org/10.1021/ja101749y
  15. Batistela VR, Fogaça LZ, Favaro SL, Caetano W, Hioka N. 2017. ZnO supported on zeolites: photocatalyst design, microporosity and properties. Colloids Surf. A Physicochem. Eng. Asp. 513: 20-27. https://doi.org/10.1016/j.colsurfa.2016.11.023
  16. Posada Y. 2013. Synthesis of silver nanoclusters on zeolite substrates. Appl. Phys. 105: 126108.
  17. Chen FN, Yang XD, Xu FF, Wu Q, Zhang YP. 2009. Correlation of photocatalytic bactericidal effect and organic matter degradation of $TiO_2$ part i: observation of phenomena. Environ. Sci. Technol. 43: 1180-1184. https://doi.org/10.1021/es802499t
  18. Kong H, Song J, Jang J. 2010. Photocatalytic antibacterial capabilities of $TiO_2$-biocidal polymer nanocomposites synthesized by a surface-initiated photopolymerization. Environ. Sci. Technol. 44: 5672-5676. https://doi.org/10.1021/es1010779
  19. Page K, Palgrave RG, Parkin IP, Wilson M, Savin SLP, Chadwick AV. 2006. Titania and silver-titania composite films on glass - potent antimicrobial coatings. J. Mater. Chem. 17: 95-104.
  20. Lin LS, Cong ZX, Li J, Ke KM, Guo SS, Yang HH, et al. 2014. Graphitic-phase $C_3N_4$ nanosheets as efficient photosensitizers and pH-responsive drug nanocarriers for cancer imaging and therapy. J. Mater. Chem. B 2: 1031-1037. https://doi.org/10.1039/c3tb21479f
  21. Zhang X, Xie X, Wang H, Zhang J, Pan B, Xie Y. 2013. Enhanced photoresponsive ultrathin graphitic-phase $C_3N_4$ nanosheets for bioimaging. J. Am. Chem. Soc. 135: 18-21. https://doi.org/10.1021/ja308249k
  22. Bing W, Chen ZW, Sun HJ, Shi P, Gao N, Ren JS, et al. 2015. Visible-light-driven enhanced antibacterial and biofilm elimination activity of graphitic carbon nitride by embedded Ag nanoparticles. Nano Res. 8: 1648-1658. https://doi.org/10.1007/s12274-014-0654-1
  23. Li J, Yin Y, Liu E, Ma Y, Wan J, Fan J, et al. 2017. In situ growing $Bi_2MoO_6$ on g-$C_3N_4$ nanosheets with enhanced photocatalytic hydrogen evolution and disinfection of bacteria under visible light irradiation. J. Hazard. Mater. 321: 183-192. https://doi.org/10.1016/j.jhazmat.2016.09.008
  24. Chen Y, Lu A, Li Y, Zhang L, Yip HY, Zhao H, et al. 2011. Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ. Sci. Technol. 45: 5689-5695. https://doi.org/10.1021/es200778p
  25. Fang H, Gao Y, Li G, An J, Wong PK, Fu H, et al. 2013. Advanced oxidation kinetics and mechanism of preservative propylparaben degradation in aqueous suspension of $TiO_2$ and risk assessment of its degradation products. Environ. Sci. Technol. 47: 2704-2712. https://doi.org/10.1021/es304898r
  26. Li G, Nie X, Chen J, Jiang Q, An T, Wong PK, et al. 2015. Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-$C_3N_4$/$TiO_2$ hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Res. 86: 17-24. https://doi.org/10.1016/j.watres.2015.05.053
  27. Wang W, Ng TW, Ho WK, Huang J, Liang S, An T, et al. 2013. $CdIn_2S_4$ microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: synthesis, characterizations and photocatalytic inactivation mechanisms. Appl. Catal. B Environ. 129: 482-490. https://doi.org/10.1016/j.apcatb.2012.09.054
  28. Wang W, Yu JC, Xia D, Wong PK, Li Y. 2013. Graphene and g-$C_3N_4$ nanosheets cowrapped elemental ${alpha}$-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ. Sci. Technol. 47: 8724-8732. https://doi.org/10.1021/es4013504
  29. Li XH, Wang X, Antonietti M. 2012. Mesoporous g-$C_3N_4$ nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem. Sci. 3: 2170-2174. https://doi.org/10.1039/c2sc20289a
  30. Adhikari SP, Pant HR, Kim JH, Kim HJ, Park CH, Kim CS. 2015. One pot synthesis and characterization of Ag-ZnO/ g-$C_3N_4$ photocatalyst with improved photoactivity and antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 482: 477-484. https://doi.org/10.1016/j.colsurfa.2015.07.003
  31. Pant HR, Pant B, Han JK, Amarjargal A, Chan HP, Tijing LD, et al. 2013. A green and facile one-pot synthesis of Ag-ZnO/ rGO nanocomposite with effective photocatalytic activity for removal of organic pollutants. Ceram. Int. 39: 5083-5091. https://doi.org/10.1016/j.ceramint.2012.12.003
  32. Sundrarajan M, Ambika S, Bharathi K. 2015. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 26: 1294-1299. https://doi.org/10.1016/j.apt.2015.07.001
  33. Yang Y, Guo Y, Liu F, Yuan X, Guo Y, Zhang S, et al. 2013. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl. Catal. B Environ. 142-143: 828-837. https://doi.org/10.1016/j.apcatb.2013.06.026
  34. Alswat AA, Ahmad MB, Saleh TA, Hussein MZ, Ibrahim NA. 2016. Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater. Sci. Eng. C 68: 505-511. https://doi.org/10.1016/j.msec.2016.06.028
  35. Munoz-Batista M J, N asalevich MA, Savenije T J, K apteijn F, Gascon J, Kubacka A, et al. 2015. Enhancing promoting effects in $g-C_3N_4-Mn^{2+}$/$CeO_2-TiO_2$ ternary composites: photohandling of charge carriers. Appl. Catal. B Environ. 176-177: 687-698. https://doi.org/10.1016/j.apcatb.2015.04.051
  36. Xiong M, Chen L, Yuan Q, He J, Luo SL, Au CT, et al. 2014. Facile fabrication and enhanced photosensitized degradation performance of the $g-C_3N_4-Bi_2O_2CO_3$ composite. Dalton Trans. 43: 8331-8337. https://doi.org/10.1039/C4DT00486H
  37. Yan SC, Li ZS, Zou ZG. 2009. Photodegradation performance of g-$C_3N_4$ fabricated by directly heating melamine. Langmuir 25: 10397-10401. https://doi.org/10.1021/la900923z
  38. Munoz-Batista MJ, Fontelles-Carceller O, Ferrer M, Fernandez-Garcia M, Kubacka A. 2016. Disinfection capability of Ag/g-$C_3N_4$ composite photocatalysts under UV and visible light illumination. Appl. Catal. B Environ. 183: 86-95. https://doi.org/10.1016/j.apcatb.2015.10.024
  39. Pant HR, Pant B, Sharma RK, Amarjargal A, Han JK, Chan HP, et al. 2013. Antibacterial and photocatalytic properties of Ag/$TiO_2$/ZnO nano-flowers prepared by facile one-pot hydrothermal process. Ceram. Int. 39: 1503-1510. https://doi.org/10.1016/j.ceramint.2012.07.097
  40. Pei P, Zhang K, Wen D. 2012. Comparative analysis of CFD models for jetting fluidized beds: the effect of inter-phase drag force. Powder Technol. 221: 114-122. https://doi.org/10.1016/j.powtec.2011.12.043
  41. Wang W, Yu Y, An T, Li G, Yip HY, Yu JC, et al. 2012. Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes: bactericidal performance and mechanism. Environ. Sci. Technol. 46: 4599-4606. https://doi.org/10.1021/es2042977

Cited by

  1. Synthesis and Photocatalytic Antibacterial Properties of Poly[2,11′-thiopheneethylenethiophene-alt-2,5-(3-carboxyl)thiophene] vol.2, pp.5, 2018, https://doi.org/10.1021/acsapm.0c00109