DOI QR코드

DOI QR Code

Effect of Leachate Recirculation LFG Generation Characteristics

침출수 재순환에 따른 매립가스 변화특성 연구

  • Won, Seung-hyun (Hanatech Co., Ltd) ;
  • Park, Dae-won (Graduate School of Energy & Environment, Seoul National University of Technology & Science)
  • 원승현 ((주)하나티이씨) ;
  • 박대원 (서울과학기술대학교 에너지환경대학원 에너지환경공학과)
  • Received : 2018.04.13
  • Accepted : 2018.05.02
  • Published : 2018.06.30

Abstract

This study has been carried out to analyze the effects of leachate recirculation on methane gas concentration in the Landfill. The monthly average on precipitation of the landfill area during the period from 2010 to 2016 has been recorded at 130.9 mm and the total precipitation was recorded at 73.7 mm for the month of June in 2017. And based on the Korea meterological administration data obtained, the water content has been anticipated to be at low level. And for the control environment testing on the effects of leachate recirculation, the reading has been carried out in relation to the methane gas concentration with the landfill site tested with average reading of 30.14%. Once the reading has been established 5 tones of leachate has been injected and the readings carried out respectively with the first reading recorded at 24.66% on June with subsequent readings carried out, 31.51 (6/24), 36.88% (7/1) and final reading carried out on 7/25 registered at 52.47%. Based on the leachate recirculation, the test showed increase of methanate concentrations with the concentration percentage showing between 50~65%.

본 연구는 침출수 재순환에 의한 매립가스에 대한 메탄가스 농도에 어떠한 영향이 있는지 분석하였다. 실험대상 매립장 지역의 2010~2016년간 월평균 총강수량은 130.9mm, 2017년 6월 총강수량 73.7mm 이었다. 이러한 기상청 자료를 근거로 실험대상 매립장의 수분함수율은 낮을 것으로 예상되었다. 실험대상 매립장에 10개의 포집공을 선정하여 5톤의 침출수를 나누어서 투입하면서 매립가스 변화특성을 조사하였다. 침출수 투입하기 전 10개의 메탄가스 농도(평균) 투입전 30.14%, 투입후 메탄가스 농도(평균) 24.66%(6월 21일), 31.51%(6월 24일), 36.68%(7월 1일), 52.47%(7월 25일)로 메탄가스 농도가 증가하였다. 본 실험대상 매립장의 경우 5톤의 침출수를 투입한 결과 매립지의 유기물질 분해에 필요한 최적 함수율 50~65% 범위를 유지하는 것으로 판단된다.

Keywords

References

  1. Ministry of Environment, "Current State of Food Waste Recycling Facilities in Korea" (2010-2016).
  2. Ministry of Environment, "The First Master Plan of Recycling of Resource" (2012).
  3. Ministy of Environment, Environmental Statistics Yearbook (2010-2016).
  4. Park, S. C. and Woo, S. H., "Effect of salinity concentration on treatment of food waste. J. of Korea Society of Waste Management, 23(4), pp. 273-277. (2006).
  5. Sponza, D. T. and Agdag, O. N., "Impact of leachate recirculation and recirculation volume on stabilization of municipal solid wastes in simulated anaerobic bioreactors", Process Biochemistry, 39, pp. 2157-2165. (2004). https://doi.org/10.1016/j.procbio.2003.11.012
  6. Francois, V., Feuillade, G., Matejka, G., Lagier, T. and Skhiri, N., "Leachate recirculation effects on waste degradation: Study on columns", Waste Management, 27, pp. 1259-1272. (2007). https://doi.org/10.1016/j.wasman.2006.07.028
  7. Benson, C. H., Barlaz, M. A., Lane, D. T. and Rawe, J. M., "Practice review of five bioreactor/ recirculation landfills", Waste Management, 27, pp. 13-29. (2007). https://doi.org/10.1016/j.wasman.2006.04.005
  8. Lee, D. H., Behera, S. K., Kim, J. W. and Park, H. S., "Methane production potential of leachate generated from Korean food waste recycling facilities : A lab-scale study", Waste Management, 29(2), pp. 876-882. (2009). https://doi.org/10.1016/j.wasman.2008.06.033
  9. Reinhart, D., Florida Bioreactor Demonstration Project Update, 7th Annual Landfill Symposium (2002).
  10. Townsend, T., Liquid System and Monitoring, Bioreactor Landfill Workshop (2003).
  11. Chun, S. K., "Research on the Methane Recovery from Landfill Gas by Applying Nitrogen Gas Separator Membrane," J. Korean Soc. Environ. Eng., 35(8), pp. 586-591. (2013). https://doi.org/10.4491/KSEE.2013.35.8.586
  12. Hur, K. B., Park, J. K. and Lee, J. B., "Development of Land Fill Gas(LFG)-MGT Power Generation and Green House Design Technology," J. Energy Eng., 20(1), 14. (2011).
  13. Pohland, F. G. and Harper, S. R., Critical Review and Summary of Leachate and Gas Production from Landfills, U. S., EPA/600/S2-86/073 (1986).
  14. Rees, J. F., "Optimization of methane production and refuse decomposition in landfills by temperature control", J. Chem. Tech. Biotechnol., 30, pp. 458-465. (1980).
  15. Barlaz. M. A., Ham. R. K. and Scaefer, D. M., "Methane production from municipal refuse : A review of enhancement techniques and microbial dynamics", Critical Review in Environmental Control, 19(6), pp.557. (1990). https://doi.org/10.1080/10643389009388384

Cited by

  1. Estimation of methane emission potential using the Clean Development Mechanism (CDM) tool for municipal solid waste landfill in Mandalay, Myanmar vol.23, pp.5, 2018, https://doi.org/10.1007/s10163-021-01243-2
  2. Estimation of methane emission potential using the Clean Development Mechanism (CDM) tool for municipal solid waste landfill in Mandalay, Myanmar vol.23, pp.5, 2018, https://doi.org/10.1007/s10163-021-01243-2