DOI QR코드

DOI QR Code

Dependence of Hot Electron Effects on Temperature in The Deep Submicron SOI n-Channel MOSFETs

Deep Submicron SOI n-채널 MOSFET에서 열전자 효과들의 온도 의존성

  • Park, Keun-Hyung (Department of Semiconductor Engineering, Graduate School, Chungbuk National University) ;
  • Cha, Ho-Il (Measurement and Analysis Team, National Nanofab Center)
  • Received : 2017.12.01
  • Accepted : 2018.03.09
  • Published : 2018.04.30

Abstract

Nowadays most integrated circuits are built using the bulk CMOS technology, but it has much difficulty in further reduction of the power consumption and die size. As a super low-power technology to solve such problems, the SOI technology attracts great attention recently. In this paper, the study results of the temperature dependency of the hot carrier effects in the n-channel MOSFETs fabricated on the thin SOI substrate were discussed. In spite that the devices employed the LDD structure, the hot carrier effects were more serious than expected due to the high series resistance between the channel region and the substrate contact to the ground, and were found to be less serious for the higher temperature with the more phonon scattering in the channel region, which resulted in reducing the hot electron generation.

현재 대부분의 집적회로는 bulk CMOS 기술을 사용해서 제작되고 있으나 전력 소모를 낮추고 die 크기를 줄이기에는 한계점에 도달해있다. 이러한 어려움을 획기적으로 극복할 수 있는 초저전력 기술로서 SOI CMOS 기술이 최근에 크게 각광을 받고 있다. 본 논문에서는 100 nm Thin SOI 기판 위에 제작된 n-채널 MOSFET 소자들의 열전자 효과들의 온도 의존성에 관한 연구 결과들이 논의되었다. 소자들이 LDD 구조를 갖고 있음에도 불구하고 열전자 효과들이 예상보다 더 심각한 것으로 나타났는데, 이는 채널과 기판 접지 사이의 직렬 저항이 크기 때문인 것으로 믿어졌다. 온도가 높을수록 채널에서의 phonon scattering의 증가와 함께 열전자 효과는 감소하였는데, 이는 phonon scattering의 증가는 결과적으로 열전자의 생성을 감소시켰기 때문인 것으로 판단된다.

Keywords

References

  1. P E. Cottrell, R. R. Troutman. T. H. Ning, "Hot-electron emission in n-channel IGFET's", IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. ED-26, NO. 4, pp. 520-533, APRIL 1997.
  2. M. Song, K. MacWilliams, and J. Woo "Comparison of NMOS and PMOS Hot Carrier Effects From 300 to 77 K" IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 44, NO. 2, pp. 268-276, FEBRUARY 1997. https://doi.org/10.1109/16.557714
  3. T. Tsuchiya, T. Ohno, Y. Kado, and J. Kai "Hot-Carrier-Injected Oxide Region in Front and Back Interfaces in Ultra-Thin (50nm), Fully Depleted, Deep-Submicron NMOS and P MOSFET's/SIMOX and their Hot Carrier Immunity", IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 42, NO. 12, pp. 2351-2356, DECEMBER 1994.
  4. L. Selmi, M. Pavesi, H. Wong, A. Acovic, and E. Sangiorgi, "Monitoring Hot-Carrier Degradation in SOI MOSFET's by Hot-Carrier Luminescence Techniques", IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 48, NO. 5, pp. 1135-1139, MAY 1994.
  5. W. Chen, R. Cheng, D. Wang, H. Song, X. Wang, H. Chen, E. Li, W. Yin, and Y. Zhao, "Electrothermal Effects on Hot-Carrier Reliability in SOI MOSFETs-AC Versus Circuit-Speed Random Stress ", IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 9, pp. 3669-3676, SEPTEMBER 2016. https://doi.org/10.1109/TED.2016.2591767
  6. Y. Kado," The Potential of Ultrathin-Film SOI Devices for Low-Power and High Speed Applications", in IEICE Transactions on Electronics, Vol. E80-C, No. 3, pp. 443-454, March 1997.
  7. S. Cristoveanu, G. Reichert, "Recent Advances in SOI Materials and Device Technologies for High Temperature", Proc. of the High-Temperature Electronic Materials, Devices and Sensors Conference, San Diego, California, U.S.A., pp.86-93, February 1998.
  8. R. Reedy et al., "Single Chip Wireless Systems Using SOI", Proc. of the International SOI Conference, San Diego, California, U.S.A., pp.8-11, October 1999.
  9. J.P. Colinge, "Silicon-On-Insulator Technology: Materials to VLSI", Kluwer Academic Publishers, Boston, U.S.A., 1997.
  10. K. Grella, S. Dreiner, H. Vogt, and U. Paschen, "Reliability of CMOS on silicon-on-insulator for use at $250^{\circ}C$", IEEE Transactions on device and materials reliability, vol. 14, no. 1, pp. 21-29, 2014. https://doi.org/10.1109/TDMR.2013.2284665
  11. J.P. Eggermont, D. Ceuster, and D. Flandre, "Design of SOI CMOS operational amplifiers for applications up to $300^{\circ}C$", IEEE Journal of Solid-State Circuits, vol. 31, no. 2, pp. 179-186, 1996. https://doi.org/10.1109/4.487994