DOI QR코드

DOI QR Code

geoA 유전자를 이용한 사상형 남조류(Nostocales, Oscillatoriales)의 Geosmin 생성능 검출

Detection of Geosmin Production Capability Using geoA Gene in Filamentous Cyanobacteria (Nostocales, Oscillatoriales) Strains

  • 류희성 (국립환경과학원 영산강물환경연구소) ;
  • 신라영 (대구대학교 생물교육전공) ;
  • 서경애 (국립환경과학원 자연환경연구과) ;
  • 이정호 (대구대학교 생물교육전공) ;
  • 김경현 (국립환경과학원 영산강물환경연구소)
  • Ryu, Hui-Seong (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Shin, Ra-Young (Department of Biology Education, Daegu University) ;
  • Seo, Kyung-Ae (Natural Environment Research Division, National Institute of Environmental Research) ;
  • Lee, Jung-Ho (Department of Biology Education, Daegu University) ;
  • Kim, Kyunghyun (Yeongsan River Environment Research Center, National Institute of Environmental Research)
  • 투고 : 2018.09.17
  • 심사 : 2018.11.28
  • 발행 : 2018.11.30

초록

Geosmin is volatile metabolites produced by a range of filamentous cyanobacteria which causes taste and odor problems in drinking water. Molecular ecological methods which target biosynthetic genes (geoA) are widely adopted to detect geosmin-producing cyanobacteria. The aim of this study was to investigate the potential production capability of 8 strains isolated from the Nakdong River. Ultimately, a suggestion for a genetical monitoring tool for the identification of geosmin producers in domestic waters was to be made. Geosmin was detected using solid phase microextraction gas chromatography mass spectrometry (SPME GC-MS) in two strains of Dolichospermum plactonicum (DGUC006, DGUC012) that were cultured for 28 day. The highest concentrations during the experiment period was $17,535ngL^{-1}$ and $14,311ngL^{-1}$ respectively. Additionally, geoA genes were amplified using two primers (geo78F/971R and geo78F/982R) from strains shown to produce geosmin, while amplification products were not detected in any of non-producing strains. PCR product (766 bp) was slightly shorter than the expected size for geosmin producers. According to the BLAST analysis, amplified genes were at nucleotide level with Anabaena ucrainica (HQ404996, HQ404997), Dolichospermum planctonicum (KM13400) and Dolichospermum ucrainicum (MF996872) between 99 ~ 100 %. Both strains were thus confirmed as potential geosmin-producing species. We concluded that the molecular method of analysis was a useful tool for monitoring potential cyanobacterial producers of geosmin.

키워드

SJBJB8_2018_v34n6_661_f0001.png 이미지

Fig. 1. Photographs of the strains isolated in Nakdong River. Akinetes and heterocytes are indicated with white and black arrows respectively. (a) Dolichospermum planctonicum, (b) D. crassum, (c) Aphanizomenon flos-aquae, (d) Planktothrix agardhii, (e) Geitlerinema amphibium, (f) Pseudanabaena westianam, (g) P. mucicola.

SJBJB8_2018_v34n6_661_f0002.png 이미지

Fig. 2. Gene cluster responsible for the synthesis of geosmin in two strains of D. ucrainicum. Upper: strain CHAB 1432; Lower: strain CHAB 2155 (after Wang et al., 2015).

SJBJB8_2018_v34n6_661_f0003.png 이미지

Fig. 3. Maximum likelihood tree based on the sequences of putative geosmin synthase from cyanobacteria, proteobacteria and actinobacteria. The strains of study are marked by shading. Numbers at the nodes are levels of bootstrap support. Scale bar indicates 5% sequence divergence. Cluster I and Cluster II denote Order Oscillatoriales and Order Nostocales, respectively.

SJBJB8_2018_v34n6_661_f0004.png 이미지

Fig. 4. Changes of cell growth and geosmin production in Dolichospermum plactonicum (strain no.: DGUC006) strain culture. The curve graph represents a mean value of cell densities and vertical bars represent standard deviation. The bar graphs represent a mean value of geosmin concentraion.

Table 1. Information on strains isolated in the Nakdong River

SJBJB8_2018_v34n6_661_t0001.png 이미지

Table 2. List of primer pairs used for PCR and sequencing of geoA synthase gene.

SJBJB8_2018_v34n6_661_t0002.png 이미지

Table 3. Blast analysis using the geoA gene. The library with the highest similarity was presented by the GenBank (National Center for Biotechnology Information, USA).

SJBJB8_2018_v34n6_661_t0003.png 이미지

Table 4. Strains used in this study for PCR and sequencing geoA, detecting geosmin. PCR was performed with primer pair geo78F/971R and geo78F/982R.

SJBJB8_2018_v34n6_661_t0004.png 이미지

참고문헌

  1. Acinas, S. G., Haverkamp, T. H., Huisman, J., and Stal, L. J. (2009). Phenotypic and genetic diversification of Pseudanabaena spp. (cyanobacteria), The ISME Journal, 3, 31-46. https://doi.org/10.1038/ismej.2008.78
  2. Byun J. H., Hwang, S. J., Kim, B. H., Park, J. R., Lee, J. K., and Lim, B. J. (2015). Relationship between a dense population of cyanobacteria and odorous compounds in the Han river system in 2014 and 2015, Journal of Korean Society on Water Environment, 48, 263-271. [Korean Literature]
  3. Chae, A. N., Shin, J. W., Jo, K. W., Lee B. C., and Song, K. G. (2017). Removal of geosmin and 2-methylisoborneol in dringking water by powdered activated carbon, Journal of the Korean Society of Civil Engineers, 37, 475-483. [Korean Literature]
  4. Dickschat, J. S., Bode, H. B., Mahmud, T., Müller R., and Schulz, S. (2005) A novel type of geosmin biosynthesis in myxobacteria, The Journal of Organic Chemistry, 70, 5174-5182.
  5. Dickschat, J. S., Thorben, N., Thiel, V., Kunze, B., Müller, R., and Schulz, S. (2007). Biosynthesis of the off-flavor 2-methylisoborneol by the myxobacterium Nannocystis exedens, Angewandte Chemie International Edition, 46, 8287-8290.
  6. Giglio, S., Jiang, J., Saint, C. P., Cane D. E., and Monis, P. T. (2008). Isolation and characterization of the gene associated with geosmin production in cyanobacteria, Environmental Science and Technology, 42, 8027-8032.
  7. Izaguirre, G. and Taylor, W. D. (2004). A guide to geosminand MIB-producing cyanobacteria in the United States, Water Science and Technology, 49, 19-24.
  8. Juttner, F. and Watson, S. B. (2007). Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters, Applied and Environmental Microbiology, 73, 4395-4406.
  9. Kakimoto, M., Ishikawa, T., Miyagi, A., Saito, K., Miyazaki, M., Asaeda, T., Tamaguchi, M., Uchimiya, H., and Kawai-Yamada, M. (2014). Culture temperature affects gene expression and metabolic pathways in the 2-methylisoborneol-producing cyanobacterium Pseudanabaena galeata, Jouurnal of Plant Physiology, 171, 292-300.
  10. Kim, K. H., Lim, B. J., You, K. A., Park, M. H., Park, J. H., Kim, B. H., and Hwang, S. J. (2014). Identification and analysis of geosmin production potential of Anabaena strain isolated from North Han river using genetic methods, Korean Journal of Ecology and Environment 47, 342-349. [Korean Literature]
  11. Kim, Y. J., Youn, S. J., Kim, H. N., Hwang, M. Y., Park, J. R., Lee, B. C., and Lee, J. K. (2015). Formation of phytoplankton community and occurences of odorous compounds for sediment incubation by water temperature, Journal of Korean Society on Water Environment, 31, 460-467. [Korean Literature]
  12. Komarek, J. (2013). Cyanoprokaryota 3. Teil / 3rd part: Heterocytous Genera, In: B. Bubel, G. Gartner, L. Krienitz and M. Schager l (eds.), SuBwasser flora von Mutteleuropa, 19/3, Springer Spektrum, 1131.
  13. Komarek, J. and Anagnostidis, K. (2005). Cyanoprokaryota 2. Teil/2nd Part: Oscillatoriales, In: Budel, B., Krienitz, L., Gartner, G. and M. Schagerl, (eds.) SuBwasserflora von Mutteleuropa, 19/2, Elsevier/Spektrum, Heidelberg, 759.
  14. Kutovaya, O. A. and Watson, S. B. (2014). Development and application of a molecular assay to detect and monitor geosmin-producing cyanobacteria and actinomycetes in the great lakes, Journal of Great Lakes Research, 40, 404-414.
  15. Ministry of Environment (ME). (2011). Standard method for water pollutants, Ministry of Environment. [Korean Literature]
  16. Shirai, M., Matumaru, K., Ohotake, A., Takamura, Y., Aida, T., and Nakano, M. (1989). Development of a solid medium for growth and isolation of axenic Microcystis strains (Cyanobacteria), Applied and Environmental Microbiology, 55, 2569-2571.
  17. Li, X., Dreher, T. W., and Li, R. (2016). An overview of diversity, occurence, genetics and toxin production of bloom-forming Dolichospermum(Anabaena) species, Harmful algae, 54, 54-68. https://doi.org/10.1016/j.hal.2015.10.015
  18. Park, H. J., Park, M. H., Shim, Y. B., Im, J. K., and Hwang, S. J. (2017). Geosmin production potential of cyanobacterium, Anabaena circinalis isolated from lake Paldang, Korea, Korean Journal of Ecology and Environment 50, 363-373. [Korean Literature]
  19. Ryu, H. S. (2017). Taxonomy and toxigenecity of bloom-forming Aphanizomenon spp. and related species within the nostocales (Cyanophyceae), Doctor's Thesis, Daegu University, Gyungsan, South Korea, 121. [Korean Literature]
  20. Ryu, H. S., Shin, R. Y., and Lee, J. H. (2017). Morphology and Taxonomy of the Aphanizomenon spp. (Cyanophyceae) and related species in the Nakdong river, South Korea, Journal of Ecology and Environment, 41(6). https://doi.org/10.1186/s41610-016-0021-0
  21. Ryu, H. S., Shin, R. Y., Seo, K. A., Lee, J. H., and Kim, K. H. (2018). Succession of cyanobacterial species and taxonmical characteristics of Dolichospermum spp. (Nostocales, Cyanophyceae) in weir region of the Nakdong river, Journal of Korean Society on Water Environment, 34, 503-513. [Korean Literature]
  22. Su, M., Gaget, V., Giglio, S., Burch, M., An, W., and Yang, M. (2013). Establishment of quantitative PCR methods for the quantification of geosmin producing potential and Anabaena sp. in freshwater systems, Water Research, 47, 3444-3454.
  23. Suurnakki S., Gomez-Saez, G. V., Rantala-Ylinen, A., Jokela, J., Fewer, D. P., and Sivonen, K. (2015). Identification of geosmin and 2-methylidoborneol in cyanobacteria and molecular detection methods for the producers of these compounds, Water Research, 68, 56-66.
  24. Tamura, K. Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. (2011). MEGA 5: Meolecular Evolutionary Genetics Analysis, Arizona: Center for Evolutionary Functional Genomics The Biodesign Institute.
  25. Wang Z., Shao, J., Xu, Y., Yan, B., and Li, R. (2015). Genetic basis for geosmin production by the water bloom-forming cyanobacterium, Anabaena ucrainica, Water, 7, 175-187.
  26. Watson, S. B., Ridal, J., and Boyer, G. L. (2008). Taste and odour and cyanobacterial toxins: impairment, prediction, and management in the great lakes, Canadian Journal of Fisheries and Aquatic Sciences, 65, 1779-1796.
  27. You, K. A., Byeon, M. S., Youn, S. J., Hwang, S. J., and Rhew, D. H. (2013). Growth characteristics of blue-green algae (Anabaena spiroides) causing tastes and odors in the North-Han river, Korea, Korean Journal of Ecology and Environment 46, 135-144. [Korean Literature]
  28. Zhang T, Li, L., Song, L., and Chen, W. (2009) Effects of temperature and light on the growth and geosmin production of Lyngbya kuetzingii (Cyanophyta), Journal of Applied Phycology, 21, 279-85.