DOI QR코드

DOI QR Code

MiR-199a/b-5p Inhibits Lymphangiogenesis by Targeting Discoidin Domain Receptor 1 in Corneal Injury

  • Oh, Sooeun (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea) ;
  • Seo, Minkoo (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea) ;
  • Choi, Jun-Sub (Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea) ;
  • Joo, Choun-Ki (Catholic Institute for Visual Science, College of Medicine, The Catholic University of Korea) ;
  • Lee, Suk Kyeong (Department of Medical Lifescience, College of Medicine, The Catholic University of Korea)
  • Received : 2017.08.11
  • Accepted : 2017.11.10
  • Published : 2018.02.28

Abstract

Discoidin domain receptor 1 (DDR1) is involved in tumorigenesis and angiogenesis. However, its role in lymphangiogenesis has been unknown. Here, we tested whether downregulation of DDR1 expression by miR-199a/b can suppress lymphangiogenesis. We also aimed to identify miRNA target site(s) in the 3' untranslated region (UTR) of DDR1. Transfection with miR-199a/b-5p mimics reduced expression of DDR1 and tube formation in primary human dermal lymphatic endothelial cells, whereas miR-199a/b-5p inhibitors showed the opposite effects. Critically, injection of miR-199a/b-5p mimics suppressed DDR1 expression and lymphangiogenesis in a corneal alkali-burn rat model. The three well-conserved seed matched sites for miR-199a/b-5p in the DDR1 3'-UTR were targeted, and miRNA binding to at least two sites was required for DDR1 inhibition. Our data suggest that DDR1 promotes enhanced lymphangiogenesis during eye injury, and miR-199a/b-5p suppresses this activity by inhibiting DDR1 expression. Thus, this miRNA may be useful for the treatment of lymphangiogenesis-related eye diseases.

Keywords

References

  1. Arnaoutova, I., George, J., Kleinman, H., and Benton, G. (2009). The endothelial cell tube formation assay on basement membrane turns 20: state of the science and the art. Angiogenesis 12, 267-274. https://doi.org/10.1007/s10456-009-9146-4
  2. Bachmann, B., Bock, F., Wiegand, S., Maruyama, K., Dana, M., Kruse, F., Luetjen-Drecoll, E., and Cursiefen, C. (2008). Promotion of graft survival by vascular endothelial growth factor a neutralization after high-risk corneal transplantation. Arch. Ophthalmol. 126, 71-77. https://doi.org/10.1001/archopht.126.1.71
  3. Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233. https://doi.org/10.1016/j.cell.2009.01.002
  4. Borza, C.M., and Pozzi, A. (2014). Discoidin domain receptors in disease. Matrix Biol. 34, 185-192. https://doi.org/10.1016/j.matbio.2013.12.002
  5. Breiteneder-Geleff, S., Soleiman, A., Kowalski, H., Horvat, R., Amann, G., Kriehuber, E., Diem, K., Weninger, W., Tschachler, E., Alitalo, K., et al. (1999). Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. Am. J. Pathol. 154.
  6. Bruick, R.K., and McKnight, S.L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337-1340. https://doi.org/10.1126/science.1066373
  7. Das, S., Ongusaha, P., Yang, Y., Park, J., Aaronson, S., and Lee, S. (2006). Discoidin domain receptor 1 receptor tyrosine kinase induces cyclooxygenase-2 and promotes chemoresistance through nuclear factor-kappaB pathway activation. Cancer Res. 66, 8123-8130. https://doi.org/10.1158/0008-5472.CAN-06-1215
  8. Fau, F.A., Fau, C.E., and Sathyanarayana, P. (2012). miR-199b-5p directly targets PODXL and DDR1 and decreased levels of miR-199b-5p correlate with elevated expressions of PODXL and DDR1 in acute myeloid leukemia. Am. J. Hematol. 87, 442-446. https://doi.org/10.1002/ajh.23129
  9. Flister, M., Wilber, A., Hall, K., Iwata, C., Miyazono, K., Nisato, R., Pepper, M., Zawieja, D., and Ran, S. (2010). Inflammation induces lymphangiogenesis through up-regulation of VEGFR-3 mediated by NF-kappaB and Prox1. Blood. 115, 418-429. https://doi.org/10.1182/blood-2008-12-196840
  10. Goyal, S., Chauhan, S., ElAnnan, J., Nallasamy, N., Zhang, Q., and Dana, R. (2010). Evidence of corneal lymphangiogenesis in dry eye disease: a potential link to adaptive immunity? Arch. Ophthalmol. 128, 819-824. https://doi.org/10.1001/archophthalmol.2010.124
  11. Grimaldo, S., Yuen, D., Theis, J., Ng, M., Ecoiffier, T., and Chen, L. (2015). MicroRNA-184 Regulates Corneal Lymphangiogenesis. Invest. Ophthalmol. Vis. Sci. 56, 7209-7213. https://doi.org/10.1167/iovs.15-17733
  12. Heinzelmann-Schwarz, V., M., G.-G., Henshall, S., Scurry, J., Scolyer, R., Davies, M., Heinzelmann, M., Kalish, L., Bali, A., Kench, J., et al. (2004). Overexpression of the cell adhesion molecules DDR1, Claudin 3, and Ep-CAM in metaplastic ovarian epithelium and ovarian cancer. Clin. Cancer Res. 10, 4427-4436. https://doi.org/10.1158/1078-0432.CCR-04-0073
  13. Hu, Y., Liu, J., Jiang, B., Chen, J., Fu, Z., Bai, F., Jiang, J., and Tang, Z. (2014). MiR-199a-5p loss up-regulated DDR1 aggravated colorectal cancer by activating epithelial-to-mesenchymal transition related signaling. Dig. Dis. Sci. 59, 2163-2172. https://doi.org/10.1007/s10620-014-3136-0
  14. Jackson, D., Prevo, R., Clasper, S., and Banerji, S. (2001). LYVE-1, the lymphatic system and tumor lymphangiogenesis. Trends Immunol. 22, 317-321. https://doi.org/10.1016/S1471-4906(01)01936-6
  15. Johansson, F., Goransson, H., and Westermark, B. (2005). Expression analysis of genes involved in brain tumor progression driven by retroviral insertional mutagenesis in mice. Oncogene 24, 3896-3905. https://doi.org/10.1038/sj.onc.1208553
  16. Jussila, L., and Alitalo, K. (2002). Vascular growth factors and lymphangiogenesis. Physiol. Rev. 82, 673-700. https://doi.org/10.1152/physrev.00005.2002
  17. Kerjaschki, D., Fau, B.-H.Z., Fau, R.M., Fau, S.V., Fau, S.C., Fau, W.S., Fau, B.G., Fau, K.S., Fau, K.R., Fau, H.B., et al. (2011). Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J. Clin. Invest. 121, 2000-2012. https://doi.org/10.1172/JCI44751
  18. Kim, H., Choi, H., and Lee, S.K. (2015). Epstein-Barr virus miRBART20-5p regulates cell proliferation and apoptosis by targeting BAD. Cancer Lett. 356, 733-742. https://doi.org/10.1016/j.canlet.2014.10.023
  19. Lam, J.K., Chow, M.Y., Zhang, Y., and Leung, S.W. (2015). siRNA Versus miRNA as therapeutics for gene silencing. Mol. Ther. Nucleic Acids 4, e252
  20. Leitinger, B. (2014). Discoidin domain receptor functions in physiological and pathological conditions. Int. Rev. Cell Mol. Biol. 310, 39-87.
  21. Leitinger, B., and Hohenester, E. (2007). Mammalian collagen receptors. Matrix Biol. 26, 146-155. https://doi.org/10.1016/j.matbio.2006.10.007
  22. Ling, S., Lin, H., Xiang, D., Feng, G., and Zhang, X. (2008). Clinical and experimental research of corneal lymphangiogenesis after keratoplasty. Ophthalmologica 222, 308-316. https://doi.org/10.1159/000144030
  23. Ling, S., Fau, L.H., Fau, L.L., Fau, X.J., Fau, X.C., Fau, Z.W., and Liu, Z. (2009). Development of new lymphatic vessels in alkali-burned corneas. Acta Ophthalmol. 87, 315-322. https://doi.org/10.1111/j.1755-3768.2008.01349.x
  24. Lossner, C., Fau, M.J., Fau, W.U., Fau, R.M., Fau, L.P., Fau, P.A., and Schnolzer, M. (2011). Quantitative proteomics identify novel miR-155 target proteins. PLoS One 6, e22146. https://doi.org/10.1371/journal.pone.0022146
  25. Lu, Q.P., Chen, W.D., Peng, J.R., Xu, Y.D., Cai, Q., Feng, G.K., Ding, K., Zhu, X.F., and Guan, Z. (2016). Antitumor activity of 7RH, a discoidin domain receptor 1 inhibitor, alone or in combination with dasatinib exhibits antitumor effects in nasopharyngeal carcinoma cells. Oncology Lett. 12, 3598-3608. https://doi.org/10.3892/ol.2016.5088
  26. Mata, R., Palladino, C., Nicolosi, M.L., Presti, A.R., Malaguarnera, R., Ragusa, M., Sciortino, D., Morrione, A., Maggiolini, M., Vella, V., et al. (2016). IGF I induces upregulation of DDR1 collagen receptor in breast cancer cells by suppressing MIR-199a-5p through the PI3K/AKT pathway. Oncotarget 7, 7683-7700.
  27. Nakanishi, M., Morita, Y., Hata, K., and Muragaki, Y. (2016). Acidic microenvironments induce lymphangiogenesis and IL-8 production via TRPV1 activation in human lymphatic endothelial cells. Exp. Cell Res. 345, 180-1889. https://doi.org/10.1016/j.yexcr.2016.06.006
  28. Paavonen, K., Puolakkainen, P., Jussila, L., Jahkola, T., and Alitalo, K. (2000). Vascular endothelial growth factor receptor-3 in lymphangiogenesis in wound healing. Am. J. Pathol. 156, 1499-1504. https://doi.org/10.1016/S0002-9440(10)65021-3
  29. Regenfuss, B., Bock, F., Parthasarathy, A., and Cursiefen, C. (2008). Corneal (lymph)angiogenesis--from bedside to bench and back: a tribute to Judah Folkman. Lymphat Res. Biol. 6, 191-201. https://doi.org/10.1089/lrb.2008.6348
  30. Sakamoto, O., Suga, M., Suda, T., and Ando, M. (2001). Expression of discoidin domain receptor 1 tyrosine kinase on the human bronchial epithelium. Eur. Respir. J. 17, 969-974. https://doi.org/10.1183/09031936.01.17509690
  31. Seo, M., Choi, J.S., Rho, C.R., Joo, C.K., and Lee, S.K. (2015). MicroRNA miR-466 inhibits Lymphangiogenesis by targeting prospero-related homeobox 1 in the alkali burn corneal injury model. J. Biomed. Sci. 22:3.
  32. Shen, Q., Cicinnati, V., Zhang, X., Iacob, S., Weber, F., Sotiropoulos, G., Radtke, A., Lu, M., Paul, A., Gerken, G., et al. (2010). Role of microRNA-199a-5p and discoidin domain receptor 1 in human hepatocellular carcinoma invasion. Mol. Cancer 9, 227. https://doi.org/10.1186/1476-4598-9-227
  33. Shrivastava, A., Radziejewski, C., Campbell, E., Kovac, L., McGlynn, M., Ryan, T., Davis, S., Goldfarb, M., Glass, D., Lemke, G., et al. (1997). An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. Mol. Cell 1, 25-34. https://doi.org/10.1016/S1097-2765(00)80004-0
  34. Song, J., Chen, X., Bai, J., Liu, Q., Li, H., Xie, J., Jing, H., and Zheng, J. (2016). Discoidin domain receptor 1 (DDR1), a promising biomarker, induces epithelial to mesenchymal transition in renal cancer cells. Tumour Biol. 37, 11509-11521. https://doi.org/10.1007/s13277-016-5021-2
  35. Vogel, W., Gish, G., Alves, F., and Pawson, T. (1997). The discoidin domain receptor tyrosine kinases are activated by collagen. Mol. Cell. 1, 13-23. https://doi.org/10.1016/S1097-2765(00)80003-9
  36. Wissmann, C., and Detmar, M. (2006). Pathways targeting tumor lymphangiogenesis. Clin. Cancer Res. 12, 6865-6868. https://doi.org/10.1158/1078-0432.CCR-06-1800
  37. Xiao, Q., Jiang, Y., Liu, Q., Yue, J., Liu, C., Zhao, X., Qiao, Y., Ji, H., Chen, J., and Ge, G. (2015). Minor type IV collagen alpha5 chain promotes cancer progression through discoidin domain receptor-1. PLoS Genet. 11.
  38. Xu, X., Fau, W.S., Fau, L.J., Fau, D.D., Fau, L.L., Fau, C.Z., Fau, Y.L., Fau, L.H., Fau, H.Q., Fau, R.J., et al. (2012). Hypoxia induces downregulation of soluble guanylyl cyclase beta1 by miR-34c-5p. J. Cell Sci. 125, 6117-6126. https://doi.org/10.1242/jcs.113381
  39. Yamanaka, R., Arao, T., Yajima, N., Tsuchiya, N., Homma, J., Tanaka, R., M., S., Oide, A., Sekijima, M., and Nishio, K. (2006). Identification of expressed genes characterizing long-term survival in malignant glioma patients. Oncogene 25, 5994-6002. https://doi.org/10.1038/sj.onc.1209585
  40. Yang, J.F., Walia, A., Huang, Y.H., Han, K.Y., Rosenblatt, M.I., Azar, D.T., and Chang, J.H. (2016). Understanding lymphangiogenesis in knockout models, the cornea, and ocular diseases for the development of therapeutic interventions. Surv. Ophthalmol. 61, 272-296. https://doi.org/10.1016/j.survophthal.2015.12.004
  41. Ying, S. Y., Chang, D.C., Miller, J.D., and Lin, S.L. (2006). The microRNA: overview of the RNA gene that modulates gene functions. Methods Mol. Biol. 342, 1-18.
  42. Zhu, J., Fau, D.-F.J., Fau, C.M., Fau, P.P., Fau, H.K., Fau, H.Y., Fau, D.M., Fau, R.M., Fau, C.J., and Azar, D.T. (2015). Simultaneous in vivo imaging of blood and lymphatic vessel growth in Prox1-GFP/Flk1::myr-mCherry mice. FEBS J. 282, 1458-1467. https://doi.org/10.1111/febs.13234

Cited by

  1. Non-coding RNAs as Regulators of Lymphangiogenesis in Lymphatic Development, Inflammation, and Cancer Metastasis vol.9, pp.None, 2019, https://doi.org/10.3389/fonc.2019.00916
  2. LncRNA DLX6-AS1 Contributes to Epithelial–Mesenchymal Transition and Cisplatin Resistance in Triple-negative Breast Cancer via Modulating Mir-199b-5p/Paxillin Axis vol.29, pp.None, 2020, https://doi.org/10.1177/0963689720929983
  3. Regenerative Approaches and Future Trends for the Treatment of Corneal Burn Injuries vol.10, pp.2, 2021, https://doi.org/10.3390/jcm10020317
  4. The Yin and Yang of Discoidin Domain Receptors (DDRs): Implications in Tumor Growth and Metastasis Development vol.13, pp.7, 2021, https://doi.org/10.3390/cancers13071725