DOI QR코드

DOI QR Code

Cancer Prevention with Green Tea and Its Principal Constituent, EGCG: from Early Investigations to Current Focus on Human Cancer Stem Cells

  • Received : 2017.09.26
  • Accepted : 2017.11.21
  • Published : 2018.02.28

Abstract

Cancer preventive activities of green tea and its main constituent, (-)-epigallocatechin gallate (EGCG) have been extensively studied by scientists all over the world. Since 1983, we have studied the cancer chemopreventive effects of EGCG as well as green tea extract and underlying molecular mechanisms. The first part of this review summarizes groundbreaking topics with EGCG and green tea extract: 1) Delayed cancer onset as revealed by a 10-year prospective cohort study, 2) Prevention of colorectal adenoma recurrence by a double-blind randomized clinical phase II trial, 3) Inhibition of metastasis of B16 melanoma cells to the lungs of mice, 4) Increase in the average value of Young's moduli, i.e., cell stiffness, for human lung cancer cell lines and inhibition of cell motility and 5) Synergistic enhancement of anticancer activity against human cancer cell lines with the combination of EGCG and anticancer compounds. In the second part, we became interested in cancer stem cells (CSCs). 1) Cancer stem cells in mouse skin carcinogenesis by way of introduction, after which we discuss two subjects from our review on human CSCs reported by other investigators gathered from a search of PubMed, 2) Expression of stemness markers of human CSCs compared with their parental cells, and 3) EGCG decreases or increases the expression of mRNA and protein in human CSCs. On this point, EGCG inhibited self-renewal and expression of pluripotency-maintaining transcription factors in human CSCs. Human CSCs are thus a target for cancer prevention and treatment with EGCG and green tea catechins.

Keywords

References

  1. Affara, N.I., Trempus, C.S., Schanbacher, B.L., Pei, P., Mallery, S.R., Bauer, J.A., and Robertson, F.M. (2006). Activation of Akt and mTOR in CD34+/K15+ keratinocyte stem cells and skin tumors during multistage mouse skin carcinogenesis. Anticancer Res. 26, 2805-2820.
  2. Beck, B., Driessens, G., Goossens, S., Youssef, K.K., Kuchnio, A., Caauwe, A., Sotiropoulou, P.A., Loges, S., Lapouge, G., Candi, A., et al. (2011). A vascular niche and a VEGF-Nrp1 loop regulate the initiation and stemness of skin tumours. Nature 478, 399-403. https://doi.org/10.1038/nature10525
  3. Bettuzzi, S., Brausi, M., Rizzi, F., Castagnetti, G., Peracchia, G., and Corti, A. (2006). Chemoprevention of human prostate cancer by oral administration of green tea catechins in volunteers with high-grade prostate intraepithelial neoplasia: a preliminary report from a oneyear proof-of-principle study. Cancer Res. 66, 1234-1240. https://doi.org/10.1158/0008-5472.CAN-05-1145
  4. Boumahdi, S., Driessens, G., Lapouge, G., Rorive, S., Nassar, D., Le Mercier, M., Delatte, B., Caauwe, A., Lenglez, S., Nkusi, E., et al. (2014). SOX2 controls tumour initiation and cancer stem-cell functions in squamous-cell carcinoma. Nature 511, 246-250. https://doi.org/10.1038/nature13305
  5. Boutwell, R.K. (1977). The role of the induction of ornithine decarboxylase in tumor promotion. In Origins of Human Cancer, H.H. Hiatt, J. D. Watson and J. A. Winsten, eds. (New York, Cold Spring Harbor Laboratory), pp. 773-783.
  6. Conney, A.H., Wang, Z.Y., Huang, M.T., Ho, C.T., and Yang, C.S. (1992). Inhibitory effect of oral administration of green tea on tumorigenesis by ultraviolet light, 12-O-tetradecanoylphorobol-13-acetate and N-nitrosodiethylamine in mice. In Cancer Chemoprevention, L.W. Wattenberg, M. Lipkin, C.W. Boone, and G.J. Kelloff, eds. (Florida: CRC Press), pp. 361-373.
  7. Cross, S.E., Jin, Y.S., Rao, J.K., and Gimzewski, J.K. (2007). Nanomechanical analysis of cells from cancer patients. Nat. Nanotechnol. 2, 780-783. https://doi.org/10.1038/nnano.2007.388
  8. Cross, S.E., Jin, Y.S., Lu, Q.Y., Rao, J.Y., and Gimzewski, J.K. (2011). Green tea extract selectively targets nanomechanics of liver metastatic cancer cells. Nanotechnology 22, 215101. https://doi.org/10.1088/0957-4484/22/21/215101
  9. Editor (1987). Green tea cuts cancerous growths. New Scientist. 116, 1586, 32.
  10. Fujiki, H. (2017). Green tea cancer prevention. In Encylopedia of Cancer, M. Schwab ed. (Berlin Heidelberg: Springer-Verlag), pp. 1960-1965.
  11. Fujiki, H., and Okuda T. (1992). (-)-Epigallocatechin gallate. Drugs Future 17, 462-464. https://doi.org/10.1358/dof.1992.017.06.175517
  12. Fujiki, H., and Suganuma, M. (1993). Tumor promotion by inhibitors of protein phosphatases 1 and 2A: the okadaic acid class of compounds. Adv. Cancer Res. 61, 143-194.
  13. Fujiki, H., and Suganuma, M. (2002). Green tea and cancer prevention. Proc. Jpn. Acad. 78(B), 263-270. https://doi.org/10.2183/pjab.78.263
  14. Fujiki, H., Suganuma, M., Okabe, S., Sueoka, E., Sueoka, N., Fujimoto, N., Goto, Y., Matsuyama, S., Imai, K., and Nakachi, K. (2001). Cancer prevention with green tea and monitoring by a new biomarker, hnRNP B1. Mutat Res. 480-481, 299-304. https://doi.org/10.1016/S0027-5107(01)00189-0
  15. Fujiki, H., Suganuma, M., Imai, K., and Nakachi, K. (2002). Green tea: cancer preventive beverage and/or drug. Cancer Lett. 188, 9-13. https://doi.org/10.1016/S0304-3835(02)00379-8
  16. Fujiki, H., Imai, K., Nakachi, K., Shimizu, M., Moriwaki, H., and Suganuma, M. (2012). Challenging the effectiveness of green tea in primary and tertiary cancer prevention. J. Cancer Res. Clin. Oncol. 138, 1259-1270. https://doi.org/10.1007/s00432-012-1250-y
  17. Fujiki, H., Sueoka, E., and Suganuma, M. (2013). Tumor promoters: from chemicals to inflammatory proteins. J. Cancer Res. Clin. Oncol. 139, 1603-1614. https://doi.org/10.1007/s00432-013-1455-8
  18. Fujiki, H., Sueoka, E., Watanabe, T., and Suganuma, M. (2015a). Synergistic enhancement of anticancer effects on numerous human cancer cell lines treated with the combination of EGCG, other green tea catechins, and anticancer compounds. J. Cancer Res. Clin. Oncol. 141, 1511-1522. https://doi.org/10.1007/s00432-014-1899-5
  19. Fujiki, H., Sueoka, E., Watanabe, T., and Suganuma, M. (2015b). Primary cancer prevention by green tea, and tertiary cancer prevention by the combination of green tea catechins and anticancer compounds. J. Cancer Prev. 20, 1-4. https://doi.org/10.15430/JCP.2015.20.1.1
  20. Fujiki, H., Sueoka, E., Rawangkan, A., and Suganuma, M. (2017). Human cancer stem cells are a target for cancer prevention using (-)-epigallocatechin gallate. J. Cancer Res. Clin. Oncol. DOI: 10.1007/s00432-017-2515-2
  21. Fujita, Y., Yamane, T., Tanaka, M., Kuwata, K., Okuzumi, J., Takahashi, T., Fujiki, H., and Okuda, Y. (1989). Inhibitory effect of (-)-epigallocatechin gallate on carcinogenesis with N-ethyl-N'-nitro-Nnitrosoguanidine in mouse duodenum. Jpn. J. Cancer Res. 80, 503-505. https://doi.org/10.1111/j.1349-7006.1989.tb01666.x
  22. Gerdes, M.J., and Yuspa, S.H. (2005). The contribution of epidermal stem cells to skin cancer. Stem Cell Rev. 1, 225-231. https://doi.org/10.1385/SCR:1:3:225
  23. Gupta, S., Hastak, K., Ahmad, N., Lewin, J.S., and Mukhtar, H. (2001). Inhibition of prostate carcinogenesis in TRAMP mice by oral infusion of green tea polyphenols. Proc. Natl. Acad. Sci. USA 98, 10350-10355. https://doi.org/10.1073/pnas.171326098
  24. Hoensch, H., Groh, B., Edler, L., and Kirch, W. (2008). Prospective cohort comparison of flavonoid treatment in patients with resected colorectal cancer to prevent recurrence. World J. Gastroenterol. 14, 2187-2193. https://doi.org/10.3748/wjg.14.2187
  25. Imai, K., Suga, K., and Nakachi, K. (1997). Cancer-preventive effects of drinking green tea among a Japanese population. Prev. Med. 26, 769-775. https://doi.org/10.1006/pmed.1997.0242
  26. Inoue, M., Tajima, K., Mizutani, M., Iwata, H., Iwase, T., Miura, S., Hirose, K., Hamajima, N., and Tominaga, S. (2001). Regular consumption of green tea and the risk of breast cancer recurrence: follow-up study from the Hospital-based Epidemiological Research Program at Aichi Cancer Center (HERPACC), Japan. Cancer Lett. 167, 175-182. https://doi.org/10.1016/S0304-3835(01)00486-4
  27. Jones, P.H., and Watt, F.M. (1993). Separation of human epidermal stem cells from transit amplifying cells on the basis of differences in integrin function and expression. Cell 73, 713-724. https://doi.org/10.1016/0092-8674(93)90251-K
  28. Kashyap, V., Rezende, N.C., Scotland, K.B., Shaffer, S.M., Persson, J.L., Gudas, L.J., and Mongan, N.P. (2009). Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev. 18, 1093-1108. https://doi.org/10.1089/scd.2009.0113
  29. Komori, A., Yatsunami, J., Okabe, S., Abe, S., Hara, K., Suganuma, M., Kim, S.J., and Fujiki, H. (1993). Anticarcinogenic activity of green tea polyphenols. Jpn. J. Clin. Oncol. 23, 186-190
  30. Lin, C.H., Shen, Y.A., Hung, P.H., Yu, Y.B., and Chen, Y.J. (2012). Epigallocatechin gallate, polyphenol present in green tea, inhibits stem-like characteristics and epithelial-mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complement Alern. Med. 12, 201. https://doi.org/10.1186/1472-6882-12-S1-P201
  31. Mineva, N.D., Paulson, K.E., Naber, S.P., Yee, A.S., and Sonenshein, G.E. (2013). Epigallocatechin-3-gallate inhibits stem-like inflammatory breast cancer cells. PLoS One 8, e73464. https://doi.org/10.1371/journal.pone.0073464
  32. Morris, R.J., Tryson, K.A., and Wu, K.Q. (2000). Evidence that the epidermal targets of carcinogen action are found in the interfollicular epidermis or infundibulum as well as in the hair follicles. Cancer Res. 60, 226-229.
  33. Nakachi, K., Suemasu, K., Suga, K., Takeo, T., Imai, K., and Higashi, Y. (1998). Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn. J. Cancer Res. 89, 254-261. https://doi.org/10.1111/j.1349-7006.1998.tb00556.x
  34. Nakachi, K., Matsuyama, S., Miyake, S., Suganuma, M., and Imai, K. (2000). Preventive effects of drinking green tea on cancer and cardiovascular disease: epidemiological evidence for multiple targeting prevention. BioFactor 13, 49-54. https://doi.org/10.1002/biof.5520130109
  35. Ogunleye, A.A., Xue, F., and Michels, K.B. (2010). Green tea consumption and breast cancer risk or recurrence: a meta-analysis. Breast Cancer Res. Treat. 119, 477-484. https://doi.org/10.1007/s10549-009-0415-0
  36. Okabe, S., Suganuma, M., Hayashi, M., Sueoka, E., Komori, A., and Fujiki, H. (1997). Mechanisms of growth inhibition of human lung cancer cell line, PC-9, by tea polyphenols. Jpn. J. Cancer Res. 88, 639-643. https://doi.org/10.1111/j.1349-7006.1997.tb00431.x
  37. Okabe, S., Ochiai, Y., Aida, M., Park, K., Kim, S.J., Nomura, T., Suganuma, M., and Fujiki, H. (1999). Mechanistic aspects of green tea as a cancer preventive: effect of components on human stomach cancer cell lines. Jpn. J. Cancer Res. 90, 733-739. https://doi.org/10.1111/j.1349-7006.1999.tb00808.x
  38. Pan, X., Zhao, B., Song, Z., Han, S., and Wang, M. (2016). Estrogen receptor-${\alpha}$36 is involved in epigallocatechin-3-gallate induced growth inhibition of ER-negative breast cancer stem/progenitor cells. J. Pharmacol. Sci. 130, 85-93. https://doi.org/10.1016/j.jphs.2015.12.003
  39. Sarkar, A., and Hochedlinger K (2013). The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 12, 15-30. https://doi.org/10.1016/j.stem.2012.12.007
  40. Shimizu, M., Fukutomi, Y., Ninomiya, M., Nagura, K., Kato, T., Araki, H., Suganuma, M., Fujiki, H., and Moriwaki, H. (2008). Green tea extracts for the prevention of metachronous colorectal adenomas: a pilot study. Cancer Epidemiol. Biomarkers Prev. 17, 3020-3025. https://doi.org/10.1158/1055-9965.EPI-08-0528
  41. Shin, C.M., Lee, D.H., Seo, A.Y., Lee, H.J., Kim, S.B., Son, W.C., Kim, Y.K., Lee, S.j., Park, S.H., Kim, N., et al. (2017). Green tea extracts for the prevention of metachronous colorectal polyps among patients who underwent endoscopic removal of colorectal adenomas: A randomized clinical trial. Clin. Nutr. Pii:S0261-5614(17)30038-9.
  42. Slaga, T.J., and Klein-Szanto, A.J. (1983). Initiation-promotion versus complete skin carcinogenesis in mice: importance of dark basal keratinocytes (stem cells). Cancer Invest. 1, 425-436. https://doi.org/10.3109/07357908309048511
  43. Sporn, M.B., Dunlop, N.M., Newton, D.L., and Smith, J.M. (1976). Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). Fed. Proc. 35, 1332-1338.
  44. Stearns, M.E., and Wang, M. (2011). Synergistic effects of the green tea extract epigallocatechin-3-gallate and taxane in eradication of malignant human prostate tumors. Transl. Oncol. 4, 147-156. https://doi.org/10.1593/tlo.10286
  45. Stingl, J.C., Ettrich, T., Muche, R., Wiedom, M., Brockmoller, J., Seeginger, A., and Seufferlein, T. (2011). Protocol for minimizing the risk of metachronous adenomas of the colorectum with green tea extract (MIRACLE): a randomised controlled trial of green tea extract versus placebo for nutriprevention of metachronous colon adenomas in the elderly population. B.M.C. Cancer 11, 360. https://doi.org/10.1186/1471-2407-11-360
  46. Suganuma, M., Fujiki, H., Suguri, H., Yoshizawa, S., Hirota, M., Nakayasu, M, Ojika, M., Wakamatsu, K., Yamada, K., and Sugimura, T. (1988). Okadaic acid: an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proc. Natl. Acad. Sci. USA 85, 1768-1771. https://doi.org/10.1073/pnas.85.6.1768
  47. Suganuma, M., Okabe, S., Oniyama, M., Tada, Y., Ito, H., and Fujiki, H. (1998). Wide distribution of [$^{3}H$](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19,1771-1776. https://doi.org/10.1093/carcin/19.10.1771
  48. Suganuma, M., Okabe, S., Kai, Y., Sueoka, N., Sueoka, E., and Fujiki, H. (1999). Synergistic effects of (-)-epigallocatechin gallate with (-)-epicatechin, sulindac, or tamoxifen on cancer-preventive activity in the human lung cancer cell line PC-9. Cancer Res. 59, 44-47.
  49. Suganuma, M., Kurusu, M., Suzuki, K., Tasaki, E., and Fujiki, H. (2006). Green tea polyphenol stimulates cancer preventive effects of celecoxib in human lung cancer cells by upregulation of GADD153 gene. Int. J. Cancer 119, 33-40. https://doi.org/10.1002/ijc.21809
  50. Suganuma, M., Saha, A., and Fujiki, H. (2011). New cancer treatment strategy using combination of green tea catechins and anticancer drugs. Cancer Sci. 102, 317-323. https://doi.org/10.1111/j.1349-7006.2010.01805.x
  51. Suganuma, M., Takahashi, A., Watanabe, T., Iida, K., Matsuzaki, T., Yoshikawa, H.Y., and Fujiki, H. (2016). Biophysical approach to mechanisms of cancer prevention and treatment with green tea catechins. Molecules 21, pii: E1566.
  52. Surh, Y.J. (2003). Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 3, 768-780. https://doi.org/10.1038/nrc1189
  53. Takahashi, A., Watanabe, T., Mondal, A., Suzuki, K., Kurusu-Kanno, M., Li, Z., Yamazaki, T., Fujiki, H., and Suganuma, M. (2014). Mechanism-based inhibition of cancer metastasis with (-)-epigallocatechin gallate. Biochem. Biophys. Res. Commun. 443, 1-6. https://doi.org/10.1016/j.bbrc.2013.10.094
  54. Tang, S.N., Fu, J., Nall, D., Rodova, M., Shankar, S., and Srivastava, R.K. (2012). Inhibition of sonic hedgehog pathway and pluripotency maintaining factors regulate human pancreatic cancer stem cell characteristics. Int. J. Cancer 131, 30-40. https://doi.org/10.1002/ijc.26323
  55. Taniguchi, S., Fujiki, H., Kobayashi, H., Go, H., Miyado, K., Sadano, H., Shimokawa, R. (1992). Effect of (-)-epigallocatechin gallate, the main constituent of green tea, on lung metastasis with mouse B16 melanoma cell lines. Cancer Lett. 65, 51-54. https://doi.org/10.1016/0304-3835(92)90212-E
  56. Toden, S., Tran, H.M., Tovar-Camargo, O.A., Okugawa, Y., and Goel, A. (2016). Epigallocatechin-3-gallate targets cancer stem-like cells and enhances 5-fluorouracil chemosensitivity in colorectal cancer. Oncotarget. 7, 16158-16170.
  57. Trempus, C.S., Morris, R.J., Ehinger, M., Elmore, A., Bortner, C.D., Ito, M., Cotsarelis, G., Nijhof, J.G.W., Peckham, J., Flagler, N., et al. (2007). CD34 expression by hair follicle stem cells is required for skin tumor development in mice. Cancer Res. 67, 4173-4181. https://doi.org/10.1158/0008-5472.CAN-06-3128
  58. Tsao, A.S., Liu, D., Martin, J., Tang, X.M., Lee, J.J., El-Naggar, A.K., Wistuba, I., Culotta, K.S., Mao, L., Gillenwater, A., et al. (2009). Phase II randomized, placebo-controlled trial of green tea extract in patients with high-risk oral premalignant lesions. Cancer Prev. Res. 2, 931-941. https://doi.org/10.1158/1940-6207.CAPR-09-0121
  59. Watanabe, T., Kuramochi, H., Takahashi, A., Imai, K., Katsuta, N., Nakayama, T., Fujiki, H., and Suganuma, M. (2012). Higher cell stiffness indicating lower metastatic potential in B16 melanoma cell variants and in (-)-epigallocatechin gallate-treated cells. J. Cancer Res. Clin. Oncol. 138, 859-866. https://doi.org/10.1007/s00432-012-1159-5
  60. Yamane, T., Takahashi, T., Kuwata, K., Oya, K., Inagake, M, Kitao, Y., Suganuma, M, and Fujiki, H. (1995). Inhibition of N-methyl-N’-nitro-N-nitrosoguanidine-induced carcinogenesis by (-)-epigallocatechin gallate in the rat glandular stomach. Cancer Res 55, 2081-2084.
  61. Yang, C.S., Wang, X., Lu, G., and Picinich, S.C. (2009). Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat. Rev. Cancer 9, 429-439. https://doi.org/10.1038/nrc2641
  62. Yoshizawa, S., Horiuchi, T., Fujiki, H., Yoshida, T., Okuda, T., and Sugimura, T. (1987). Antitumor promoting activity of (-)-epigallocatechin gallate, the main constituent of "tannin" in green tea. Phytother. Res. 1, 44-47. https://doi.org/10.1002/ptr.2650010110
  63. Yoshizawa, S., Horiuchi, T., Suganuma, M., Nishiwaki, S., Yatsunami, J., Okabe, S., Okuda, T., Muto, Y., Frenkel, K., Troll, W., et al. (1992). Penta-O-galloyl-${\beta}$-D-glucose and (-)-epigallocatechin gallate cancer preventive agents. ACS Symposium Series. 501, 316-325.
  64. Zhang, X.T., Kang, L.G., Ding, L., Vranic, S., Gatalica, Z., and Wang, Z.T. (2011). A positive feedback loop of ER-${\alpha}$36/EGFR promotes malignant growth of ER-negative breast cancer cells. Oncogene 30, 770-780. https://doi.org/10.1038/onc.2010.458
  65. Zhu, J., Jiang, Y., Yang, X., Wang, S., Xie, C., Li ,X., Li, Y., Chen, Y., Wang, X., Meng, Y., et al. (2017). Wnt/${\beta}$-catenin pathway mediates (-)-epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochemical Biophys. Res. Commun. 482, 15-21. https://doi.org/10.1016/j.bbrc.2016.11.038

Cited by

  1. Green Tea Catechin Is an Alternative Immune Checkpoint Inhibitor that Inhibits PD-L1 Expression and Lung Tumor Growth vol.23, pp.8, 2018, https://doi.org/10.3390/molecules23082071
  2. Prevention of breast cancer by dietary polyphenols—role of cancer stem cells pp.1549-7852, 2019, https://doi.org/10.1080/10408398.2018.1551778
  3. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects vol.37, pp.1, 2018, https://doi.org/10.1186/s13046-018-0929-6
  4. Prophylactic vs. Therapeutic Treatment With P2Et Polyphenol-Rich Extract Has Opposite Effects on Tumor Growth vol.8, pp.None, 2018, https://doi.org/10.3389/fonc.2018.00356
  5. Anticancer Effects of Green Tea and the Underlying Molecular Mechanisms in Bladder Cancer vol.5, pp.3, 2018, https://doi.org/10.3390/medicines5030087
  6. Dual-Specificity Tyrosine Phosphorylation-Regulated Kinase 1A (DYRK1A) Inhibitors as Potential Therapeutics vol.61, pp.22, 2018, https://doi.org/10.1021/acs.jmedchem.8b00185
  7. Green Tea Consumption and Risk of Breast Cancer and Recurrence—A Systematic Review and Meta-Analysis of Observational Studies vol.10, pp.12, 2018, https://doi.org/10.3390/nu10121886
  8. Regulation of Neprilysin Activity and Cognitive Functions in Rats After Prenatal Hypoxia vol.44, pp.6, 2018, https://doi.org/10.1007/s11064-019-02796-3
  9. Multilevel structure-activity profiling reveals multiple green tea compound families that each modulate ubiquitin-activating enzyme and ubiquitination by a distinct mechanism vol.9, pp.None, 2019, https://doi.org/10.1038/s41598-019-48888-6
  10. Inhibitory Effects of (−)-Epigallocatechin-3-gallate on Esophageal Cancer vol.24, pp.5, 2018, https://doi.org/10.3390/molecules24050954
  11. Prevention of therapy-related malignances in cancer survivors vol.10, pp.22, 2018, https://doi.org/10.18632/oncotarget.26781
  12. Advances in the Antagonism of Epigallocatechin-3-gallate in the Treatment of Digestive Tract Tumors vol.24, pp.9, 2018, https://doi.org/10.3390/molecules24091726
  13. A review of nutrition and dietary interventions in oncology vol.8, pp.None, 2018, https://doi.org/10.1177/2050312120926877
  14. The Synergistic Anticancer Effect of Dual Drug- (Cisplatin/Epigallocatechin Gallate) Loaded Gelatin Nanoparticles for Lung Cancer Treatment vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/9181549
  15. Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action vol.11, pp.None, 2018, https://doi.org/10.3389/fimmu.2020.580208
  16. Recent advances in natural therapeutic approaches for the treatment of cancer vol.32, pp.2, 2018, https://doi.org/10.1080/1120009x.2019.1707417
  17. Antimetastatic Properties of Tea Polyphenols vol.72, pp.3, 2018, https://doi.org/10.1080/01635581.2019.1638426
  18. Coumaroyl Flavonol Glycosides and More in Marketed Green Teas: An Intrinsic Value beyond Much-Lauded Catechins vol.25, pp.8, 2018, https://doi.org/10.3390/molecules25081765
  19. Nutrigenomics: Epigenetics and cancer prevention: A comprehensive review vol.60, pp.8, 2020, https://doi.org/10.1080/10408398.2019.1571480
  20. Bioavailability of Epigallocatechin Gallate Administered with Different Nutritional Strategies in Healthy Volunteers vol.9, pp.5, 2018, https://doi.org/10.3390/antiox9050440
  21. Effects and mechanisms of tea for the prevention and management of cancers: An updated review vol.60, pp.10, 2020, https://doi.org/10.1080/10408398.2019.1588223
  22. Effective disposal of methylene blue using green immobilized silver nanoparticles on graphene oxide and reduced graphene oxide sheets through one-pot synthesis vol.192, pp.6, 2020, https://doi.org/10.1007/s10661-020-08278-2
  23. MicroRNA-21-Enriched Exosomes as Epigenetic Regulators in Melanomagenesis and Melanoma Progression: The Impact of Western Lifestyle Factors vol.12, pp.8, 2018, https://doi.org/10.3390/cancers12082111
  24. An Update on the Role of Dietary Phytochemicals in Human Skin Cancer: New Insights into Molecular Mechanisms vol.9, pp.10, 2018, https://doi.org/10.3390/antiox9100916
  25. Effectiveness of concomitant use of green tea and polyethylene glycol in bowel preparation for colonoscopy: a randomized controlled study vol.20, pp.None, 2020, https://doi.org/10.1186/s12876-020-01220-3
  26. Camellia Sinensis Mouthwashes in Oral Care: a Systematic Review vol.21, pp.4, 2020, https://doi.org/10.30476/dentjods.2020.83204.1045
  27. Health Benefits and Chemical Composition of Matcha Green Tea: A Review vol.26, pp.1, 2018, https://doi.org/10.3390/molecules26010085
  28. Epigallocatechin-3-gallate Can Prevent Type 2 Human Papillomavirus E7 from Suppressing Interferon-Stimulated Genes vol.22, pp.5, 2018, https://doi.org/10.3390/ijms22052418
  29. EGCG synergizes the therapeutic effect of irinotecan through enhanced DNA damage in human colorectal cancer cells vol.25, pp.16, 2018, https://doi.org/10.1111/jcmm.16718
  30. Targeting Autophagy with Natural Products as a Potential Therapeutic Approach for Cancer vol.22, pp.18, 2018, https://doi.org/10.3390/ijms22189807