• Title/Summary/Keyword: EEWS

Search Result 74, Processing Time 0.042 seconds

On-Site Earthquake Early Warning System Design and Performance Evaluation Method (현장 지진조기경보시스템의 설계 및 성능평가 방법)

  • Choi, Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.179-185
    • /
    • 2020
  • Recently, in order to improve the performance of the Earthquake Early Warning System (EEWS) and to supplement the effects of earthquake disaster prevention in epicenters or near epicenters, development of on-site EEWS has been attempted. Unlike the national EEWS, which is used for earthquake disaster prevention by using seismic observation networks for earthquake research and observation, on-site EEWS aims at earthquake disaster prevention and therefore requires efficient design and evaluation in terms of performance and cost. At present, Korea lacks the necessary core technologies and operational know-how, including the use of existing EEWS design criteria and evaluation methods for the development of On-Site EEWS as well as EEWS. This study proposes hardware and software design directions and performance evaluation items and methods for seismic data collection, data processing, and analysis for localization of On-Site EEWS based on the seismic accelerometer requirements of the Seismic and Volcanic Disaster Response Act.

Ultrathin Titania Coating for High-temperature Stable $SiO_2$/Pt Nanocatalysts

  • Reddy, A. Satyanarayana;Kim, S.;Jeong, H.Y.;Jin, S.;Qadir, K.;Jung, K.;Jung, C.H.;Yun, J.Y.;Cheon, J.Y.;Joo, S.H.;Terasaki, O.;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.217-217
    • /
    • 2011
  • Recently, demand for thermally stable metal nanoparticles suitable for chemical reactions at high temperatures has increased to the point to require a solution to nanoparticle coalescence. Thermal stability of metal nanoparticles can be achieved by adopting core-shell models and encapsulating supported metal nanoparticles with mesoporous oxides [1,2]. However, to understand the role of metal-support interactions on catalytic activity and for surface analysis of complex structures, we developed a novel catalyst design by coating an ultra-thin layer of titania on Pt supported silica ($SiO_2/Pt@TiO_2$). This structure provides higher metal dispersion (~52% Pt/silica), high thermal stability (~600$^{\circ}C$) and maximization of the interaction between Pt and titania. The high thermal stability of $SiO_2/Pt@TiO_2$ enabled the investigation of CO oxidation studies at high temperatures, including ignition behavior, which is otherwise not possible on bare Pt nanoparticles due to sintering [3]. It was found that this hybrid catalyst exhibited a lower activation energy for CO oxidation because of the metal-support interaction. The concept of an ultra-thin active metal oxide coating on supported nanoparticles opens-up new avenues for synthesis of various hybrid nanocatalysts with combinations of different metals and oxides to investigate important model reactions at high-temperatures and in industrial reactions.

  • PDF

The Chemically Induced Hot Electron Flows on Metal-Semiconductor Schottky nanodiodes During Hydrogen Oxidation

  • Lee, Hyosun;Lee, Youngkeun;Lee, Changhwan;Kim, Sunmi;Park, Jeong Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.152-152
    • /
    • 2013
  • Mechanism of energy conversion from chemical to electrical during exothermic catalytic reactions at the metal surfaces has been a fascinating and crucial subject in heterogeneous catalysis. A metal-semiconductor Schottky nanodiode is novel device for direct detection of chemically induced hot electrons which have sufficient energy to surmount the Schottky barrier. We measured a continuous chemicurrent during the hydrogen oxidation under of 760 Torr of O2 and 6 Torr of H2 by using Pt/Si and Pt/TiO2 nanodiodes at reaction temperatures and compared the chemicurrent with the reaction turnover rate. The thermoelectric current was measured by carrying out an experiment under O2 condition for elimination of the background current. Gas chromatograph and source meter were used for measurement of the chemical turnover rate and the chemicurrent, respectively. The correlation between the chemicurrent and the chemical turnover rate under hydrogen oxidation implies how hot electrons generated on the metal surface affect hydrogen oxidation.

  • PDF

Binary Doping of N-B and N-P into Graphene and Graphene Nanoribbons: Structural, Electronic, and Transport properties

  • Kim, Hyo Seok;Kim, Han Seul;Kim, Seong Sik;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.647-647
    • /
    • 2013
  • We apply a density functional theory (DFT) and DFT-based non-equilibrium Green's function approach to study the structures, energetics and charge transport characteristics of nitrogen-doped graphene and graphene nanoribbons (GNRs) with additional doping of phosphorus or boron atoms. Considering graphitic, pyridinic, and porphrin-like N doping sites and increasing N-doping concentration, we analyze the structures of N-P and N-B doped graphene and particularly focus on how they affect the charge transport along the lateral direction. For the GNRs, we also consider the differences between defects formed at the edge and bulk regions. Implications of our findings in the context of electronic and energy device applications will be also discussed.

  • PDF

Charge Transport at the Interfaces between Carbon Nanotube and Wetting Metal Leads Mediated via Topological Defects

  • Ko, Kwan Ho;Kim, Han Seul;Kim, Hu Sung;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.179.2-179.2
    • /
    • 2014
  • Carbon nanotubes (CNT)-metal contacts play an important role in nanoelectronics applications such as field-effect transistor (FET) devices. Using Al and (10,0) CNT, we have recently showed that the CNT-metal contacts mediated via topological defects within CNT exhibits intrinsically low contact resistance, thanks to the preservation of the sp2 bonding network at the metal-CNT contacts.[1] It is well-established that metals with good wetting property such as Pd consistently yield good contacts to both metallic and semiconducting CNTs. In this work, the electronic and charge transport properties of the interfaces between capped CNT and Pd will be investigated based on first-principles computations and compared with previous results obtained for the Al electrodes.

  • PDF

The Role of the Surface Oxide Layer on Ru Nanoparticles in Catalytic Activity of CO Oxidation

  • Kim, Sun-Mi;Qadir, Kamran;Jin, Sook-Young;Jung, Kyeong-Min;Reddy, A. Satyanarayana;Joo, Sang-Hoon;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.304-304
    • /
    • 2010
  • The study on the catalytic oxidation of carbon monoxide (CO) to carbon dioxide ($CO_2$) using the noble metals has long been the interest subject and the recent progress in nanoscience provides the opportunity to develop new model systems of catalysts in this field. Of the noble metal catalysts, we selected ruthenium (Ru) as metal catalyst due to its unusual catalytic behavior. The size of colloid Ru NPs was controlled by the concentration of Ru precursor and the final reduction temperatures. For catalytic activity of CO oxidation, it was found that the trend is dependent on the size of Ru NPs. In order to explain this trend, the surface oxide layer surrounding the metal core has been suggested as the catalytically active species through several studies. In this poster, we show the influence of surface oxide on Ru NPs on the catalytic activity of CO oxidation using chemical treatments including oxidation, reduction and UV-Ozone surface treatment. The changes occurring to UV-Ozone surface treatment will be characterized with XPS and SEM. The catalytic activity before and after the chemical modification were measured. We discuss the trend of catalytic activity in light of the formation of core-shell type oxide on nanoparticles surfaces.

  • PDF

A Carbon Nanotubes-Silicon Nanoparticles Network for High Performance Lithium Rechargeable Battery Anodes

  • Kim, Byung Gon;Shin, Weon Ho;Lim, Soo Yeon;Kong, Byung Seon;Choi, Jang Wook
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.116-122
    • /
    • 2012
  • As an effort to address the chronic capacity fading of Si anodes and thus achieve their robust cycling performance, herein, we develop a unique electrode in which silicon nanoparticles are embedded in the carbon nanotubes network. Utilizing robust contacts between silicon nanoparticles and carbon nanotubes, the composite electrodes exhibit excellent electrochemical performance : 95.5% capacity retention after 140 cycles as well as rate capability such that at the C-rate increase from 0.1C to 1C to 10C, the specific capacities of 850, 698, and 312 mAh/g are obtained, respectively. The present investigation suggests a useful design principle for silicon as well as other high capacity alloying electrodes that undergo large volume expansions during battery operations.

Charge Transport Properties of Boron/Nitrogen Binary Doped Graphene Nanoribbons: An ab Initio Study

  • Kim, Seong Sik;Kim, Han Seul;Kim, Hyo Seok;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.180.2-180.2
    • /
    • 2014
  • Opening a bandgap by forming graphene nanoribbons (GNRs) and tailoring their properties via doping is a promising direction to achieve graphene-based advanced electronic devices. Applying a first-principles computational approach combining density functional theory (DFT) and DFT-based non-equilibrium Green's function (NEGF) calculation, we herein study the structural, electronic, and charge transport properties of boron-nitrogen binary edge doped GNRs and show that it can achieve novel doping effects that are absent for the single B or N doping. For the armchair GNRs, we find that the B-N edge co-doping almost perfectly recovers the conductance of pristine GNRs. For the zigzag GNRs, it is found to support spatially and energetically spin-polarized currents in the absence of magnetic electrodes or external gate fields: The spin-up (spin-down) currents along the B-N undoped edge and in the valence (conduction) band edge region. This may lead to a novel scheme of graphene band engineering and benefit the design of graphene-based spintronic devices.

  • PDF

Achieving Robust N-type Nitrogen-doped Graphene Via a Binary-doping Approach

  • Kim, Hyo Seok;Kim, Han Seul;Kim, Seong Sik;Kim, Yong Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.192.2-192.2
    • /
    • 2014
  • Among various dopant candidates, nitrogen (N) atoms are considered as the most effective dopants to improve the diverse properties of graphene. Unfortunately, recent experimental and theoretical studies have revealed that different N-doped graphene (NGR) conformations can result in both p- and n-type characters depending on the bonding nature of N atoms (substitutional, pyridinic, pyrrolic, and nitrilic). To overcome this obstacle in achieving reliable graphene doping, we have carried out density functional theory calculations and explored the feasibility of converting p-type NGRs into n-type by introducing additional dopant candidates atoms (B, C, O, F, Al, Si, P, S, and Cl). Evaluating the relative formation energies of various binary-doped NGRs and the change in their electronic structure, we conclude that B and P atoms are promising candidates to achieve robust n-type NGRs. The origin of such p- to n-type change is analyzed based on the crystal orbital Hamiltonian population analysis. Implications of our findings in the context of electronic and energy device applications will be also discussed.

  • PDF

Investigation of the Corrosive Chemical Interaction on Antireflective Layers of Solar Cell Multilayers

  • Choe, Seong-Hyeon;Kim, Seon-Mi;Jin, Suk-Yeong;Park, Jeong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.187-187
    • /
    • 2011
  • Nowadays, the issue of solar cell durability in local weather and environment is a crucial issue. Above all, surface corrosion on solar cell multilayers is a major factor that determines the durability of commercial solar cells; corrosive chemical interactions between air, humidity and chemical species and solar cell multilayers can unfavorably affect the durability. Here, we study microscopic and spectroscopic surface techniques to investigate the corrosive interaction on the antireflective layers of solar cell multilayers under various conditions such as acid, base, constant temperature and humidity. Surface morphology and adhesion force were characterized with atomic force microscopy before and after chemical treatment. Chemical composition, and transmittance factors were studied with X-ray photoelectron spectroscopy, and ultraviolet-visible spectroscopy, respectively. Based on these studies, we suggest the dominant factors in the corrosive chemical processes, and their influences on the structural, compositional, and optical properties of the antireflective layers.

  • PDF