DOI QR코드

DOI QR Code

Bioproduction of trans-10,cis-12-Conjugated Linoleic Acid by a Highly Soluble and Conveniently Extracted Linoleic Acid Isomerase and an Extracellularly Expressed Lipase from Recombinant Escherichia coli Strains

  • Huang, Mengnan (The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University) ;
  • Lu, Xinyao (The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University) ;
  • Zong, Hong (The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University) ;
  • Zhuge, Bin (The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University) ;
  • Shen, Wei (Culture and Information Center of Industrial Microorganism of China Universities, Jiangnan University)
  • Received : 2018.02.01
  • Accepted : 2018.03.12
  • Published : 2018.05.28

Abstract

The low solubility and high-cost recovery of Propionibacterium acnes polyunsaturated fatty acid isomerase (PAI) are key problems in the bioproduction of high value-added conjugated linoleic acid (CLA). To improve the solubility of recombinant PAI, six chaperone proteins were coexpressed with PAI. Introduction of GroELS proteins dramatically improved the PAI solubility from 29% to 97%, with increased activity by 57.8%. Combined expression of DnaKJ-GrpE and GroELS proteins increased the activity by 11.9%. In contrast, coexpression of DnaKJ-GrpE proteins significantly reduced the activity by 57.4%. Plasmids pTf16 harboring the tig gene and pG-Tf2 containing the tig and groEL-groES genes had no visible impact on PAI expression. The lytic protein E was then introduced into the recombinant Escherichia coli to develop a cell autolysis system. A 35% activity of total intracellular PAI was released from the cytoplasm by suspending the lysed cells in distilled water. The PAI recovery was further improved to 81% by optimizing the release conditions. The lipase from Rhizopus oryzae was also expressed in E. coli, with an extracellular activity of 110.9 U/ml. By using the free PAI and lipase as catalysts, a joint system was established for producing CLA from sunflower oil. Under the optimized conditions, the maximum titer of t-10,c-12-CLA reached 9.4 g/l. This work provides an effective and low-cost strategy to improve the solubility and recovery of the recombinant intracellular PAI for further large-scale production of CLA.

Keywords

References

  1. Bhattacharya A, Banu J, Rahman M, Causey J, Fernandes G. 2006. Biological effects of conjugated linoleic acids in health and disease. J. Nutr. Biochem. 17: 789-810. https://doi.org/10.1016/j.jnutbio.2006.02.009
  2. Watras AC, Buchholz AC, Close RN, Zhang Z, Schoeller DA. 2007. The role of conjugated linoleic acid in reducing body fat and preventing holiday weight gain. Int. J. Obes. 31: 481-487. https://doi.org/10.1038/sj.ijo.0803437
  3. Wang QY, Li X, Du KF, Yao S, Song H. 2013. Conjugated linoleic acid production by alkali isomerization of linoleic acid from Idesia polycarpa Maxim. var. vestita Diels oil. Asian J. Chem. 25: 3744-3748.
  4. Wahle KWJ, Heys SD, Rotondo D. 2004. Conjugated linoleic acids: are they beneficial or detrimental to health? Prog. Lipid Res. 43: 553-587. https://doi.org/10.1016/j.plipres.2004.08.002
  5. JM B, MK M. 2003. Conjugated linoleic acid in humans: regulation of adiposity and insulin sensitivity. J. Nutr. 133: 3041-3046. https://doi.org/10.1093/jn/133.10.3041
  6. Yang B, Gao H, Stanton C, Paul RR, Zhang H, Chen YQ, et al. 2017. Bacterial conjugated linoleic acid production and their applications. Prog. Lipid Res. 68: 26-36. https://doi.org/10.1016/j.plipres.2017.09.002
  7. Deng M-D, Grund AD, Schneider KJ, Langley KM, Wassink SL, Peng SS, et al. 2007. Linoleic acid isomerase from Propionibacterium acnes: purification, characterization, molecular cloning, and heterologous expression. Appl. Biochem. Biotechnol. 143: 199-211. https://doi.org/10.1007/s12010-007-8075-1
  8. Liavonchanka A, Hornung E, Feussner I, Rudolph MG. 2006. Structure and mechanism of the Propionibacterium acnes polyunsaturated fatty acid isomerase. Proc. Natl. Acad. Sci. USA 103: 2576-2581. https://doi.org/10.1073/pnas.0510144103
  9. Rong C, Chen H, Song Y, Zhang H, Chen W. 2012. De novo synthesis of trans-10,cis-12 conjugated linoleic acid in oleaginous yeast Yarrowia lipolytica. Microb. Cell Fact. 11: 51. https://doi.org/10.1186/1475-2859-11-51
  10. Hao D, Chen H, Hao G, Yang B, Zhang B, Zhang H, et al. 2015. Production of conjugated linoleic acid by heterologous expression of linoleic acid isomerase in oleaginous fungus Mortierella alpina. Biotechnol. Lett. 37: 1983-1992. https://doi.org/10.1007/s10529-015-1871-8
  11. Zhang Y, Gu H, Shi H, Wang F, Li X. 2017. Green synthesis of conjugated linoleic acids from plant oils using a novel synergistic catalytic system. J. Agric. Food Chem. 65: 5322-5329. https://doi.org/10.1021/acs.jafc.7b00846
  12. Schlieker C, Bukau B, Mogk A. 2002. Prevention and reversion of protein aggregation by molecular chaperones in the E. coli cytosol: implications for their applicability in biotechnology. J. Biotechnol. 96: 13-21. https://doi.org/10.1016/S0168-1656(02)00033-0
  13. Baneyx F, Mujacic M. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat. Biotechnol. 22: 1399-1408. https://doi.org/10.1038/nbt1029
  14. He X, Shang J, Li F, Liu H. 2015. Yeast cell surface display of linoleic acid isomerase from Propionibacterium acnes and its application for the production of trans-10, cis-12 conjugated linoleic acid. Biotechnol. Appl. Biochem. 62: 1-8. https://doi.org/10.1002/bab.1249
  15. Zhang B, Song Y, Chen H, Zhang H, Chen W. 2016. Production of trans-10,cis-12-conjugated linoleic acid using permeabilized whole-cell biocatalyst of Yarrowia lipolytica. Biotechnol. Lett. 38: 1-6. https://doi.org/10.1007/s10529-015-1960-8
  16. Witte A, Wanner G, Sulzner M, Lubitz W. 1992. Dynamics of PhiX174 protein E-mediated lysis of Escherichia coli. Arch. Microbiol. 157: 381-388. https://doi.org/10.1007/BF00248685
  17. Ehgartner D, Sagmeister P, Langemann T, Meitz A, Lubitz W, Herwig C. 2017. A novel method to recover inclusion body protein from recombinant E. coli fed-batch processes based on phage $\Phi$X174-derived lysis protein E. Appl. Microbiol. Biotechnol. 101: 5603-5614. https://doi.org/10.1007/s00253-017-8281-x
  18. Sührer I, Langemann T, Lubitz W, Weuster-Botz D, Castiglione K. 2015. A novel one-step expression and immobilization method for the production of biocatalytic preparations. Microb. Cell Fact. 14: 1-9. https://doi.org/10.1186/s12934-014-0183-3
  19. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  20. Kordel M, Hofmann B, Schomburg D, Schmid RD. 1991. Extracellular lipase of Pseudomonas sp. strain ATCC 21808: purification, characterization, crystallization, and preliminary X-ray diffraction data. J. Bacteriol. 173: 4836-4841. https://doi.org/10.1128/jb.173.15.4836-4841.1991
  21. Xu Y, Wang D, Mu XQ, Zhao GA, Zhang KC. 2002. Biosynthesis of ethyl esters of short-chain fatty acids using whole-cell lipase from Rhizopus chinesis CCTCC M201021 in non-aqueous phase. J. Mol. Catal. B Enzym. 18: 29-37. https://doi.org/10.1016/S1381-1177(02)00056-5
  22. Hartl FU, Hayerhartl M. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295: 1852-1858. https://doi.org/10.1126/science.1068408
  23. de Marco A, Deuerling E, Mogk A, Tomoyasu T, Bukau B. 2007. Chaperone-based procedure to increase yields of soluble recombinant proteins produced in E. coli. BMC Biotechnol. 7: 32. https://doi.org/10.1186/1472-6750-7-32
  24. Lu X, He S, Hong Z, Jian S, Wen C, Zhuge B. 2016. Improved 1,2,4-butanetriol production from an engineered Escherichia coli by co-expression of different chaperone proteins. World J. Microbiol. Biotechnol. 32: 149. https://doi.org/10.1007/s11274-016-2085-5
  25. Houry WA, Frishman D, Eckerskorn C, Lottspeich F, Hartl FU. 1999. Identification of in vivo substrates of the chaperonin GroEL. Nature 402: 147-154. https://doi.org/10.1038/45977
  26. Kondo A, Kohda J, Endo Y, Shiromizu T, Kurokawa Y, Nishihara K, et al. 2000. Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90: 600-606. https://doi.org/10.1016/S1389-1723(00)90003-3
  27. Pfeffer J, Rusnak M, Hansen CE, Rhlid RB, Schmid RD, Maurer SC. 2007. Functional expression of lipase A from Candida antarctica in Escherichia coli - A prerequisite for high-throughput screening and directed evolution. J. Mol. Catal. B Enzym. 45: 62-67. https://doi.org/10.1016/j.molcatb.2006.11.006
  28. Martínez-Alonso M, Vera A, Villaverde A. 2007. Role of the chaperone DnaK in protein solubility and conformational quality in inclusion body-forming Escherichia coli cells. FEMS Microbiol. Lett. 273: 187-195. https://doi.org/10.1111/j.1574-6968.2007.00788.x
  29. Allan D, Crumpton MJ. 1971. Solubilization of pig lymphocyte plasma membrane and fractionation of some of the components. Biochem. J. 123: 967-975. https://doi.org/10.1042/bj1230967
  30. Di LM, Hidalgo A, Haas M, Bornscheuer UT. 2005. Heterologous production sof functional forms of Rhizopus oryzae lipase in Escherichia coli. Appl. Environ. Microbiol. 71: 8974-8977. https://doi.org/10.1128/AEM.71.12.8974-8977.2005
  31. Mustranta A, Forssell P, Poutanen K. 1995. Comparison of lipases and phosholipases in the hydrolysis of phospholipids. Process Biochem. 30: 393-401. https://doi.org/10.1016/0032-9592(94)00030-1