References
- Chisti Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
- Jonker J, Faaij A. 2013. Techno-economic assessment of micro-algae as feedstock for renewable bio-energy production. Appl. Energy 102: 461-475. https://doi.org/10.1016/j.apenergy.2012.07.053
- Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232. https://doi.org/10.1016/j.rser.2009.07.020
- Pinzi S, Garcia IL, Lopez-Gimenez FJ, Luque de Castro MD, Dorado G, Dorado MP. 2009. The ideal vegetable oil-based biodiesel composition: a review of social, economical and technical implications. Energy Fuels 23: 2325-2341. https://doi.org/10.1021/ef801098a
- Park H, Lee C-G. 2016. Theoretical calculations on the feasibility of microalgal biofuels: utilization of marine resources could help realizing the potential of microalgae. Biotechnol. J. 11: 1461-1470. https://doi.org/10.1002/biot.201600041
- Wijffels RH, Barbosa MJ. 2010. An outlook on microalgal biofuels. Science 329: 796-799. https://doi.org/10.1126/science.1189003
- Christenson L, Sims R. 2011. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29: 686-702. https://doi.org/10.1016/j.biotechadv.2011.05.015
- Kim ZH, Park H, Ryu YJ, Shin DW, Hong SJ, Tran HL, et al. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27: 1763-1773. https://doi.org/10.1007/s10811-015-0556-y
- Kim ZH, Park H, Lee C-G. 2016. Seasonal assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactors. J. Microbiol. Biotechnol. 26: 1098-1102. https://doi.org/10.4014/jmb.1601.01031
- Dong T, Wang J, Miao C, Zheng Y, Chen S. 2013. Two-step in situ biodiesel production from microalgae with high free fatty acid content. Bioresour. Technol. 136: 8-15. https://doi.org/10.1016/j.biortech.2013.02.105
- Dong T, Gao D, Miao C, Yu X, Degan C, Garcia-Perez M, et al. 2015. Two-step microalgal biodiesel production using acidic catalyst generated from pyrolysis-derived bio-char. Energy Convers. Manag. 105: 1389-1396. https://doi.org/10.1016/j.enconman.2015.06.072
- Chen L, Liu T, Zhang W, Chen X, Wang J. 2012. Biodiesel production from algae oil high in free fatty acids by two- step catalytic conversion. Bioresour. Technol. 111: 208-214. https://doi.org/10.1016/j.biortech.2012.02.033
- Shu Q, Gao J, Nawaz Z, Liao Y, Wang D, Wang J. 2010. Synthesis of biodiesel from waste vegetable oil with large amounts of free fatty acids using a carbon-based solid acid catalyst. Appl. Energy 87: 2589-2596. https://doi.org/10.1016/j.apenergy.2010.03.024
- Lou WY, Zong MH, Duan ZQ. 2008. Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresour. Technol. 99: 8752-8758. https://doi.org/10.1016/j.biortech.2008.04.038
- Tran HL, Ryu YJ, Seong DH, Lim SM, Lee C-G. 2013. An effective acid catalyst for biodiesel production from impure raw feedstocks. Biotechnol. Bioprocess Eng. 18: 242-247. https://doi.org/10.1007/s12257-012-0674-1
- Abdullah SHYS, Hanapi NHM, Azid A, Umar R, Juahir H, Khatoon H, et al. 2017. A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew. Sustain. Energy Rev. 70: 1040-1051. https://doi.org/10.1016/j.rser.2016.12.008
- Guldhe A, Singh P, Ansari FA, Singh B, Bux F. 2017. Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel 187: 180-188. https://doi.org/10.1016/j.fuel.2016.09.053
- Islam A, Taufiq-Yap YH, Chan ES, Moniruzzaman M, Islam S, Nabi MN. 2014. Advances in solid-catalytic and non-catalytic technologies for biodiesel production. Energy Convers. Manag. 88: 1200-1218. https://doi.org/10.1016/j.enconman.2014.04.037
- Kiss AA, Dimian AC, Rothenberg G. 2006. Solid acid catalysts for biodiesel production - towards sustainable energy. Adv. Synth. Catal. 348: 75-81. https://doi.org/10.1002/adsc.200505160
- Mo X, Lotero E, Lu C, Liu Y, Goodwin JG. 2008. A novel sulfonated carbon composite solid acid catalyst for biodiesel synthesis. Catal. Lett. 123: 1-6. https://doi.org/10.1007/s10562-008-9456-y
- Wei Z, Xu C, Li B. 2009 Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresour. Technol. 100: 2883-2885. https://doi.org/10.1016/j.biortech.2008.12.039
- Suryaputra W, Winata I, Indraswati N, Ismadji S. 2013. Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy 50: 795-799. https://doi.org/10.1016/j.renene.2012.08.060
- Ngaosuwan K. 2015. Solid Acid Catalyst Derived from Coffee Residue for Biodiesel Production, pp. 47-55. In Sayigh A (ed.), Renewable Energy in the Service of Mankind, Vol I. Springer, Berlin.
- Viriya-Empikul N, Krasae P, Nualpaeng W, Yoosuk B, Faungnawakij K. 2012. Biodiesel production over Ca-based solid catalysts derived from industrial wastes. Fuel 92: 239-244. https://doi.org/10.1016/j.fuel.2011.07.013
- Takagaki A, Toda M, Okamura M, Kondo JN, Hayashi S, Domen K, et al. 2006. Esterification of higher fatty acids by a novel strong solid acid. Catal. Today 116: 157-161. https://doi.org/10.1016/j.cattod.2006.01.037
- Kiyotaka N, Hara M, Hayashi S. 2007. Environmentally benign production of chemicals and energy using a carbon- based strong solid acid. J. Am. Ceram. Soc. 90: 3725-3734.
- Liu XY, Huang M, Ma HL, Zhang ZQ, Gao JM, Zhu YL, et al. 2010. Preparation of a carbon-based solid acid catalyst by sulfonating activated carbon in a chemical reduction process. Molecules 15: 7188-7196. https://doi.org/10.3390/molecules15107188
-
Thamaphat K, Limsuwan P, Ngotawornchai B. 2008. Phase characterization of
$TiO_2$ powder by XRD and TEM. Kasetsart J. (Nat. Sci.) 42: 357-361. - Matsuhashi H, Hino M, Arata K. 1991. Synthesis of solid superacid of silica treated with sulfuryl chloride. Catal. Lett. 8: 269-271. https://doi.org/10.1007/BF00764126
- Chen G, Fang B. 2011. Preparation of solid acid catalyst from glucose-starch mixture for biodiesel production. Bioresour. Technol. 102: 2635-2640. https://doi.org/10.1016/j.biortech.2010.10.099
- Alaba PA, Sani YM, Daud W. 2016. Efficient biodiesel production via solid superacid catalysis: a critical review on recent breakthrough. RSC Adv. 6: 78351-78368. https://doi.org/10.1039/C6RA08399D
- Boey PL, Maniam GP, Hamid SA. 2009. Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour. Technol. 100: 6362-6368. https://doi.org/10.1016/j.biortech.2009.07.036
- Viriya-Empikul N, Krasae P, Puttasawat B, Yoosuk B, Chollacoop N, Faungnawakij K. 2010. Waste shells of mollusk and egg as biodiesel production catalysts. Bioresour. Technol. 101: 3765-3767. https://doi.org/10.1016/j.biortech.2009.12.079
- Boro J, Thakur AJ, Deka D. 2011. Solid oxide derived from waste shells of Turbonilla striatula as a renewable catalyst for biodiesel production. Fuel Process. Technol. 92: 2061-2067. https://doi.org/10.1016/j.fuproc.2011.06.008
Cited by
- Tailoring the surface area and the acid-base properties of ZrO2 for biodiesel production from Nannochloropsis sp. vol.9, pp.1, 2018, https://doi.org/10.1038/s41598-019-52771-9
- Solid Acid Catalysts for Biodiesel Production vol.40, pp.4, 2020, https://doi.org/10.1080/02603594.2020.1755273
- Engineered algal biochar for contaminant remediation and electrochemical applications vol.774, pp.None, 2018, https://doi.org/10.1016/j.scitotenv.2021.145676
- A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications vol.10, pp.1, 2022, https://doi.org/10.1016/j.jece.2021.107017