DOI QR코드

DOI QR Code

Stimulatory Effects of Sugarcane Molasses on Fumigaclavine C Biosynthesis by Aspergillus fumigatus CY018 via Biofilm Enhancement

  • Tao, Jun (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • An, Fa-Liang (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Pan, Zheng-Hua (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology) ;
  • Lu, Yan-Hua (State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology)
  • Received : 2018.01.29
  • Accepted : 2018.03.12
  • Published : 2018.05.28

Abstract

Biofilms are of vital significance in bioconversion and biotechnological processes. In this work, sugarcane molasses was used to enhance biofilms for the improvement of the production of fumigaclavine C (FC), a conidiation-associated ergot alkaloid with strong anti-inflammatory activities. Biofilm formation was more greatly induced by the addition of molasses than the addition of other reported biofilm inducers. With the optimal molasses concentration (400 g/l), the biofilm biomass was 6-fold higher than that with sucrose, and FC and conidia production was increased by 5.8- and 3.1-fold, respectively. Moreover, the global secondary metabolism regulatory gene laeA, FC biosynthetic gene fgaOx3, and asexual central regulatory genes brlA and wetA were upregulated in molasses-based biofilms, suggesting the upregulation of both asexual development and FC biosynthesis. This study provides novel insight into the stimulatory effects of molasses on biofilm formation and supports the widespread application of molasses as an inexpensive raw material and effective inducer for biofilm production.

Keywords

References

  1. Zhu YX, Yao LY, Jiao RH, Lu YH, Tan RX. 2014. Enhanced production of fumigaclavine C in liquid culture of Aspergillus fumigatus under a two-stage process. Bioresour. Technol. 152: 162-168. https://doi.org/10.1016/j.biortech.2013.10.089
  2. Wu XF, Fei MJ, Shu RG, Tan RX, Xu Q. 2005. Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity. Int. Immunopharmacol. 5: 1543-1553. https://doi.org/10.1016/j.intimp.2005.04.014
  3. Zhao Y, Liu JY, Wang J, Wang L, Yin H, Tan RX, et al. 2004. Fumigaclavine C improves concanavalin A-induced liver injury in mice mainly via inhibiting TNF-${\alpha}$ production and lymphocyte adhesion to extracellular matrices. J. Pharm. Pharmacol. 56: 775-782. https://doi.org/10.1211/0022357023592
  4. Li YX, Himaya SW, Dewapriya P, Zhang C, Kim SK. 2013. Fumigaclavine C from a marine-derived fungus Aspergillus fumigatus induces apoptosis in MCF-7 breast cancer cells. Mar. Drugs 11: 5063-5086. https://doi.org/10.3390/md11125063
  5. Du RH, Qin SY, Shi LS, Zhou ZQ, Zhu XY, Liu J, et al. 2014. Fumigaclavine C activates PPAR${\gamma}$ pathway and attenuates atherogenesis in ApoE-deficient mice. Atherosclerosis 234: 120-128. https://doi.org/10.1016/j.atherosclerosis.2014.02.016
  6. Unsöld IA, Li SM. 2005. Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151: 1499-1505. https://doi.org/10.1099/mic.0.27759-0
  7. Wallwey C, Li SM. 2011. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat. Prod. Rep. 28: 496-510. https://doi.org/10.1039/C0NP00060D
  8. Mai P, Li SM. 2013. Alkaloids derived from tryptophan: a focus on ergot alkaloids, pp. 701-702. In Ramawat KG, Merillon JM (eds.), Natural Products. Springer, Berlin-Heidelberg.
  9. Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, et al. 2007. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS. Pathog. 3: e50. https://doi.org/10.1371/journal.ppat.0030050
  10. Twumasi-Boateng K, Yu Y, Chen D, Gravelat FN, Nierman WC, Sheppard DC. 2009. Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus. Eukaryot. Cell 8: 104-115. https://doi.org/10.1128/EC.00265-08
  11. Yao LY, Zhu YX, Jiao RH, Lu YH, Tan RX. 2014. Enhanced production of fumigaclavine C by ultrasound stimulation in a two-stage culture of Aspergillus fumigatus CY018. Bioresour. Technol. 159: 112-117. https://doi.org/10.1016/j.biortech.2014.02.072
  12. Gonzalez-Ramirez AI, Ramirez-Granillo A, Medina-Canales MG, Rodriguez-Tovar AV, Martinez-Rivera MA. 2016. Analysis and description of the stages of Aspergillus fumigatus biofilm formation using scanning electron microscopy. BMC Microbiol. 16: 243. https://doi.org/10.1186/s12866-016-0859-4
  13. Lynch AS, Robertson GT. 2008. Bacterial and fungal biofilm infections. Annu. Rev. Med. 59: 415-428. https://doi.org/10.1146/annurev.med.59.110106.132000
  14. Fanning S, Mitchell AP. 2012. Fungal biofilms. PLoS. Pathog. 8: e1002585. https://doi.org/10.1371/journal.ppat.1002585
  15. Anderson JG, Blain JA, Divers M, Todd JR. 1980. Use of the disc fermenter to examine production of citric acid by Aspergillus niger. Biotechnol. Lett. 2: 99-104. https://doi.org/10.1007/BF00142033
  16. Blain JA, Anderson JG, Todd JR, Divers M. 1979. Cultivation of filamentous fungi in the disc fermenter. Biotechnol. Lett. 1: 269-274. https://doi.org/10.1007/BF01386763
  17. Ramage G, Rajendran R, Gutierrez-Correa M, Jones B, Williams C. 2011. Aspergillus biofilms: clinical and industrial significance. FEMS Microbiol. Lett. 324: 89-97. https://doi.org/10.1111/j.1574-6968.2011.02381.x
  18. Wang J. 2000. Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Bioresour. Technol. 75: 245-247. https://doi.org/10.1016/S0960-8524(00)00053-5
  19. Ogawa A, Wakisaka Y, Tanaka T, Sakiyama T, Nakanishi K. 1995. Production of kojic acid by membrane-surface liquid culture of Aspergillus oryzae NRRL484. J. Ferment. Bioeng. 80: 41-45. https://doi.org/10.1016/0922-338X(95)98174-J
  20. Aziani G, Terenzi HF, Jorge JA, Guimaraes LHS. 2012. Production of fructooligosaccharides by Aspergillus phoenicis biofilm on polyethylene as inert support. Food Technol. Biotechnol. 50: 40-45.
  21. Wang HL, Li P, Liu YF, Ren ZF, Wang G. 2012. Overproduction of a potential red pigment by a specific self-immobilization biomembrane-surface liquid culture of Penicillium novae-zeelandiae. Bioprocess Biosyst. Eng. 35: 1407-1416. https://doi.org/10.1007/s00449-012-0729-x
  22. Gamarra NN, Villena GK, Gutiérrez-Correa M. 2010. Cellulase production by Aspergillus niger in biofilm, solid- state, and submerged fermentations. Appl. Microbiol. Biotechnol. 87: 545-551. https://doi.org/10.1007/s00253-010-2540-4
  23. Bruns S, Seidler M, Albrecht D, Salvenmoser S, Remme N, Hertweck C, et al. 2010. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics 10: 3097-3107. https://doi.org/10.1002/pmic.201000129
  24. Zhu YX, Hu WW, Yao LY, Yu WG, Jiao RH, Lu YH, et al. 2015. Improvement of fumigaclavine C production in a two- stage culture of Aspergillus fumigatus with molasses as a cost- effective ingredient. Biotechnol. Bioprocess Eng. 20: 1106-1113. https://doi.org/10.1007/s12257-015-0193-y
  25. Mowat E, Butcher J, Lang S, Williams C, Ramage G. 2007. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol. 56: 1205-1212. https://doi.org/10.1099/jmm.0.47247-0
  26. Ali N, Yousaf S, Anam M, Bangash Z, Maleeha S. 2016. Evaluating the efficiency of a mixed culture biofilm for the treatment of black liquor and molasses in a mediator-less microbial fuel cell. Environ. Technol. 37: 2815-2822. https://doi.org/10.1080/09593330.2016.1166267
  27. Hu X, Chen K, Lai X, Ji S, Kaiser K. 2016. Effects of Fe(III) on biofilm and its extracellular polymeric substances (EPS) in fixed bed biofilm reactors. Water Sci. Technol. 73: 2060-2066. https://doi.org/10.2166/wst.2016.042
  28. Varhimo E, Varmanen P, Fallarero A, Skogman M, Pyorala S, Iivanainen A, et al. 2011. Alpha- and ${\beta}$-casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Vet. Microbiol. 149: 381-389. https://doi.org/10.1016/j.vetmic.2010.11.010
  29. Yigit N, Aktas E, Dagistan S, Ayyildiz A. 2011. Investigating biofilm production, coagulase and hemolytic activity in Candida species isolated from denture stomatitis patients. Eurasian J. Med. 43: 27-32. https://doi.org/10.5152/eajm.2011.06
  30. Adams TH, Wieser JK, Yu JH. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62: 35-54.
  31. Chang PK, Hua SS. 2007. Molasses supplementation promotes conidiation but suppresses aflatoxin production by small sclerotial Aspergillus flavus. Lett. Appl. Microbiol. 44: 131-137. https://doi.org/10.1111/j.1472-765X.2006.02056.x
  32. Tudzynski P, Correia T, Keller U. 2001. Biotechnology and genetics of ergot alkaloids. Appl. Microbiol. Biotechnol. 57: 593-605. https://doi.org/10.1007/s002530100801
  33. Alkhayyat F, Sun CK, Yu JH. 2014. Genetic control of asexual development in Aspergillus fumigatus. Adv. Appl. Microbiol. 90: 93-107.
  34. Kosalkova K, Garciaestrada C, Ullan RV, Godio RP, Feltrer R, Teijeira F, et al. 2009. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91: 214-225. https://doi.org/10.1016/j.biochi.2008.09.004
  35. Lee SS, Lee JH, Lee I. 2013. Strain improvement by overexpression of the laeA gene in Monascus pilosus for the production of monascus-fermented rice. J. Microbiol. Biotechnol. 23: 959-965. https://doi.org/10.4014/jmb.1303.03026
  36. Bayram OS, Bayram O, Valerius O, Park HS, Irniger S, Gerke J, et al. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell- type specificity. PLoS. Genet. 6: e1001226. https://doi.org/10.1371/journal.pgen.1001226