References
- Zhu YX, Yao LY, Jiao RH, Lu YH, Tan RX. 2014. Enhanced production of fumigaclavine C in liquid culture of Aspergillus fumigatus under a two-stage process. Bioresour. Technol. 152: 162-168. https://doi.org/10.1016/j.biortech.2013.10.089
- Wu XF, Fei MJ, Shu RG, Tan RX, Xu Q. 2005. Fumigaclavine C, an fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity. Int. Immunopharmacol. 5: 1543-1553. https://doi.org/10.1016/j.intimp.2005.04.014
-
Zhao Y, Liu JY, Wang J, Wang L, Yin H, Tan RX, et al. 2004. Fumigaclavine C improves concanavalin A-induced liver injury in mice mainly via inhibiting TNF-
${\alpha}$ production and lymphocyte adhesion to extracellular matrices. J. Pharm. Pharmacol. 56: 775-782. https://doi.org/10.1211/0022357023592 - Li YX, Himaya SW, Dewapriya P, Zhang C, Kim SK. 2013. Fumigaclavine C from a marine-derived fungus Aspergillus fumigatus induces apoptosis in MCF-7 breast cancer cells. Mar. Drugs 11: 5063-5086. https://doi.org/10.3390/md11125063
-
Du RH, Qin SY, Shi LS, Zhou ZQ, Zhu XY, Liu J, et al. 2014. Fumigaclavine C activates PPAR
${\gamma}$ pathway and attenuates atherogenesis in ApoE-deficient mice. Atherosclerosis 234: 120-128. https://doi.org/10.1016/j.atherosclerosis.2014.02.016 - Unsöld IA, Li SM. 2005. Overproduction, purification and characterization of FgaPT2, a dimethylallyltryptophan synthase from Aspergillus fumigatus. Microbiology 151: 1499-1505. https://doi.org/10.1099/mic.0.27759-0
- Wallwey C, Li SM. 2011. Ergot alkaloids: structure diversity, biosynthetic gene clusters and functional proof of biosynthetic genes. Nat. Prod. Rep. 28: 496-510. https://doi.org/10.1039/C0NP00060D
- Mai P, Li SM. 2013. Alkaloids derived from tryptophan: a focus on ergot alkaloids, pp. 701-702. In Ramawat KG, Merillon JM (eds.), Natural Products. Springer, Berlin-Heidelberg.
- Perrin RM, Fedorova ND, Bok JW, Cramer RA, Wortman JR, Kim HS, et al. 2007. Transcriptional regulation of chemical diversity in Aspergillus fumigatus by LaeA. PLoS. Pathog. 3: e50. https://doi.org/10.1371/journal.ppat.0030050
- Twumasi-Boateng K, Yu Y, Chen D, Gravelat FN, Nierman WC, Sheppard DC. 2009. Transcriptional profiling identifies a role for BrlA in the response to nitrogen depletion and for StuA in the regulation of secondary metabolite clusters in Aspergillus fumigatus. Eukaryot. Cell 8: 104-115. https://doi.org/10.1128/EC.00265-08
- Yao LY, Zhu YX, Jiao RH, Lu YH, Tan RX. 2014. Enhanced production of fumigaclavine C by ultrasound stimulation in a two-stage culture of Aspergillus fumigatus CY018. Bioresour. Technol. 159: 112-117. https://doi.org/10.1016/j.biortech.2014.02.072
- Gonzalez-Ramirez AI, Ramirez-Granillo A, Medina-Canales MG, Rodriguez-Tovar AV, Martinez-Rivera MA. 2016. Analysis and description of the stages of Aspergillus fumigatus biofilm formation using scanning electron microscopy. BMC Microbiol. 16: 243. https://doi.org/10.1186/s12866-016-0859-4
- Lynch AS, Robertson GT. 2008. Bacterial and fungal biofilm infections. Annu. Rev. Med. 59: 415-428. https://doi.org/10.1146/annurev.med.59.110106.132000
- Fanning S, Mitchell AP. 2012. Fungal biofilms. PLoS. Pathog. 8: e1002585. https://doi.org/10.1371/journal.ppat.1002585
- Anderson JG, Blain JA, Divers M, Todd JR. 1980. Use of the disc fermenter to examine production of citric acid by Aspergillus niger. Biotechnol. Lett. 2: 99-104. https://doi.org/10.1007/BF00142033
- Blain JA, Anderson JG, Todd JR, Divers M. 1979. Cultivation of filamentous fungi in the disc fermenter. Biotechnol. Lett. 1: 269-274. https://doi.org/10.1007/BF01386763
- Ramage G, Rajendran R, Gutierrez-Correa M, Jones B, Williams C. 2011. Aspergillus biofilms: clinical and industrial significance. FEMS Microbiol. Lett. 324: 89-97. https://doi.org/10.1111/j.1574-6968.2011.02381.x
- Wang J. 2000. Production of citric acid by immobilized Aspergillus niger using a rotating biological contactor (RBC). Bioresour. Technol. 75: 245-247. https://doi.org/10.1016/S0960-8524(00)00053-5
- Ogawa A, Wakisaka Y, Tanaka T, Sakiyama T, Nakanishi K. 1995. Production of kojic acid by membrane-surface liquid culture of Aspergillus oryzae NRRL484. J. Ferment. Bioeng. 80: 41-45. https://doi.org/10.1016/0922-338X(95)98174-J
- Aziani G, Terenzi HF, Jorge JA, Guimaraes LHS. 2012. Production of fructooligosaccharides by Aspergillus phoenicis biofilm on polyethylene as inert support. Food Technol. Biotechnol. 50: 40-45.
- Wang HL, Li P, Liu YF, Ren ZF, Wang G. 2012. Overproduction of a potential red pigment by a specific self-immobilization biomembrane-surface liquid culture of Penicillium novae-zeelandiae. Bioprocess Biosyst. Eng. 35: 1407-1416. https://doi.org/10.1007/s00449-012-0729-x
- Gamarra NN, Villena GK, Gutiérrez-Correa M. 2010. Cellulase production by Aspergillus niger in biofilm, solid- state, and submerged fermentations. Appl. Microbiol. Biotechnol. 87: 545-551. https://doi.org/10.1007/s00253-010-2540-4
- Bruns S, Seidler M, Albrecht D, Salvenmoser S, Remme N, Hertweck C, et al. 2010. Functional genomic profiling of Aspergillus fumigatus biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics 10: 3097-3107. https://doi.org/10.1002/pmic.201000129
- Zhu YX, Hu WW, Yao LY, Yu WG, Jiao RH, Lu YH, et al. 2015. Improvement of fumigaclavine C production in a two- stage culture of Aspergillus fumigatus with molasses as a cost- effective ingredient. Biotechnol. Bioprocess Eng. 20: 1106-1113. https://doi.org/10.1007/s12257-015-0193-y
- Mowat E, Butcher J, Lang S, Williams C, Ramage G. 2007. Development of a simple model for studying the effects of antifungal agents on multicellular communities of Aspergillus fumigatus. J. Med. Microbiol. 56: 1205-1212. https://doi.org/10.1099/jmm.0.47247-0
- Ali N, Yousaf S, Anam M, Bangash Z, Maleeha S. 2016. Evaluating the efficiency of a mixed culture biofilm for the treatment of black liquor and molasses in a mediator-less microbial fuel cell. Environ. Technol. 37: 2815-2822. https://doi.org/10.1080/09593330.2016.1166267
- Hu X, Chen K, Lai X, Ji S, Kaiser K. 2016. Effects of Fe(III) on biofilm and its extracellular polymeric substances (EPS) in fixed bed biofilm reactors. Water Sci. Technol. 73: 2060-2066. https://doi.org/10.2166/wst.2016.042
-
Varhimo E, Varmanen P, Fallarero A, Skogman M, Pyorala S, Iivanainen A, et al. 2011. Alpha- and
${\beta}$ -casein components of host milk induce biofilm formation in the mastitis bacterium Streptococcus uberis. Vet. Microbiol. 149: 381-389. https://doi.org/10.1016/j.vetmic.2010.11.010 - Yigit N, Aktas E, Dagistan S, Ayyildiz A. 2011. Investigating biofilm production, coagulase and hemolytic activity in Candida species isolated from denture stomatitis patients. Eurasian J. Med. 43: 27-32. https://doi.org/10.5152/eajm.2011.06
- Adams TH, Wieser JK, Yu JH. 1998. Asexual sporulation in Aspergillus nidulans. Microbiol. Mol. Biol. Rev. 62: 35-54.
- Chang PK, Hua SS. 2007. Molasses supplementation promotes conidiation but suppresses aflatoxin production by small sclerotial Aspergillus flavus. Lett. Appl. Microbiol. 44: 131-137. https://doi.org/10.1111/j.1472-765X.2006.02056.x
- Tudzynski P, Correia T, Keller U. 2001. Biotechnology and genetics of ergot alkaloids. Appl. Microbiol. Biotechnol. 57: 593-605. https://doi.org/10.1007/s002530100801
- Alkhayyat F, Sun CK, Yu JH. 2014. Genetic control of asexual development in Aspergillus fumigatus. Adv. Appl. Microbiol. 90: 93-107.
- Kosalkova K, Garciaestrada C, Ullan RV, Godio RP, Feltrer R, Teijeira F, et al. 2009. The global regulator LaeA controls penicillin biosynthesis, pigmentation and sporulation, but not roquefortine C synthesis in Penicillium chrysogenum. Biochimie 91: 214-225. https://doi.org/10.1016/j.biochi.2008.09.004
- Lee SS, Lee JH, Lee I. 2013. Strain improvement by overexpression of the laeA gene in Monascus pilosus for the production of monascus-fermented rice. J. Microbiol. Biotechnol. 23: 959-965. https://doi.org/10.4014/jmb.1303.03026
- Bayram OS, Bayram O, Valerius O, Park HS, Irniger S, Gerke J, et al. 2010. LaeA control of velvet family regulatory proteins for light-dependent development and fungal cell- type specificity. PLoS. Genet. 6: e1001226. https://doi.org/10.1371/journal.pgen.1001226