DOI QR코드

DOI QR Code

Electrochemical oxidation-reduction and determination of urea at enzyme free PPY-GO electrode

  • Mudila, Harish (Department of Chemistry, G. B. Pant University of Agriculture & Technology) ;
  • Prasher, Parteek (Department of Chemistry, University of Petroleum and Energy Studies) ;
  • Rana, Sweta (Department of Chemistry, Lovely Professional University) ;
  • Khati, Beena (Department of Biotechnology, DBS Campus Bhimtal Kumaun University) ;
  • Zaidi, M.G.H. (Department of Chemistry, Lovely Professional University)
  • Received : 2017.04.16
  • Accepted : 2017.07.07
  • Published : 2018.04.30

Abstract

This manuscript explains the effective determination of urea by redox cyclic voltammetric analysis, for which a modified polypyrrole-graphene oxide (PPY-GO, GO 20% w/w of PPY) nanocomposite electrode was developed. Cyclic voltammetry measurements revealed an effective electron transfer in 0.1 M KOH electrolytic solution in the potential window range of 0 to 0.6 V. This PPY-GO modified electrode exhibited a moderate electrocatalytic effect towards urea oxidation, thereby allowing its determination in an electrolytic solution. The linear dependence of the current vs. urea concentration was reached using square-wave voltammetry in the concentration range of urea between 0.5 to $3.0{\mu}M$ with a relatively low limit of detection of $0.27{\mu}M$. The scanning electron microscopy was used to characterize the morphologies and properties of the nanocomposite layer, along with Fourier transform infrared spectroscopy. The results indicated that the nanocomposite film modified electrode exhibited a synergistic effect, including high conductivity, a fast electron-transfer rate, and an inherent catalytic ability.

Keywords

References

  1. Branzoi V, Musina A, Branzoi F. Amperometric Urea Biosensor Based Platinum Electrode Modified With A Composite Film. Rev. Roum. Chim., 56(9), 883 (2011). DOI: http://dx.doi.org/10.5772/52440
  2. Singh M, Verma N, Garg AK, Redhu N. Urea biosensors. Sensors and Actuators B: Chemical, Sensors and Actuators B. 134, 345 (2008). DOI: 10.1016/j.snb.2008.04.025
  3. Arain M, Nafady A, Sirajuddin, Ibupoto ZH, Sherazi T, Shaikh T, Abdul Niaz AN, Willander M, Simpler and highly sensitive enzyme free sensing of urea via NiO nanostructures modified electrode. RSC Adv., 6, 39001 (2016). DOI: 10.1039/C6RA00521G.
  4. Hamilton A. The Formation and Characterisation of a Polypyrrole Based Sensor for the Detection of Urea. National University of Ireland, Maynooth, PhD Thesis (2012).
  5. Nicolau E, Fonseca JJ, Cabrera CR. Development of a Urea Bioprobe Based on Platinized Boron-Doped Diamond Electrodes. Electroanalysis, 24(11), 2102 (2012). DOI: 10.1002/elan.201200459.
  6. Manea F, Pop A, Radovan C, Malchev P, Bebeselea A, Burtica G, Picken S, Schoonman J. Voltammetric Detection of Urea on an Ag-Modified Zeolite-Expanded Graphite-Epoxy Composite Electrode. Sensors, 8, 5806 (2008). DOI:10.3390/s8095806
  7. Ivanova S, Ivanov Y, Godjevargova T. Urea Amperometric Biosensors Based on Nanostructured Polypyrrole and Poly Ortho-Phenylenediamine. Open Journal of Applied Biosensor. 2, 12 (2013). DOI:10.4236/ojab.2013.21002.
  8. Mondal S, Sangaranarayanan MV. A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode. Sensors & Actuators: B. Chemical. 177, 478 (2013). DOI: 10.1016/j.snb.2012.11.031
  9. Park SH, Jin JH, Min NK, Hong SI. Poly(3-methylthiophene)-Based Urea Sensors with Planar Pt Electrodes on Silicon Substrates. Journal of the Korean Physical Society, 40(1),17 (2002). DOI: 10.3938/jkps.40.17
  10. Yang JK, Ha KS, Baek HS, Lee SS, Seo ML. Amperometric Determination of Urea Using Enzyme-Modified Carbon Paste Electrode. Bull. Korean Chem. Soc., 25(10), 1499 (2004). DOI: 10.5012/bkcs.2004.25.10.1499
  11. Yoon H. Current Trends in Sensors Based on Conducting Polymer Nanomaterials. Nanomaterials. 3, 524 (2013). DOI: 10.3390/nano3030524
  12. Ramanavicius A, Ramanaviciene A, Malinauskas A. Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta., 51(27), 6025 (2006). DOI: http://dx.doi.org/10.1016/j.electacta.2005.11.052
  13. Rick J, Chou TC. Amperometric protein sensor-fabricated as a polypyrrole, poly-aminophenylboronic acid bilayer. Biosensors and Bioelectronics, 22, 329 (2006). DOI: 10.1016/j.bios.2006.04.007
  14. Chen Y, Elling, Lee YL, Chong SC. A Fast, Sensitive and Label Free Electrochemical DNA Sensor. Journal of Physics: Conference Series, 34, 204 (2006). DOI:10.1088/1742-6596/34/1/034
  15. Tiwari DC, Jain R, Sharma S. Electrochemically deposited polyaniline/polypyrrole polymer film modified electrodes for determination of furazolidone drug. Journal of Scientific and Industrial Research, 66, 1011 (2007). DOI: http://nopr.niscair.res.in/handle/123456789/1347
  16. Xing X, Liu S, Yu J, Lian W, Huang J. Electrochemical sensor based on molecularly imprinted film at polypyrrole-sulfonated graphene/hyaluronic acid-multiwalled carbon nanotubes modified electrode for determination of tryptamine. Biosens Bioelectron. 31(1), 277 (2012). DOI: 10.1016/j.bios.2011.10.032.
  17. Sasso L, Heiskanen A, Diazzi F, Dimaki M, Castillo-Leon J, Vergani M, Landini E, Raiteri R, Ferrari G, Carminati M, Sampietro M, Svendsen WE, Emneus J. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations. Analyst, 138, 3651 (2013). DOI: 10.1039/c3an00085k.
  18. Zhang T, Yuan R, Chai Y, Li W, Ling S. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on a Polypyrrole Nanowire-Copper Nanocomposite Modified Gold Electrode. Sensors, 8, 5141 (2008). DOI: 10.3390/s8085141
  19. Yang G, Tan L, Shi Y, Wang S, Lu X, Bai H, Yang Y. Direct Determination of Uric Acid in Human Serum Samples Using Polypyrrole Nanoelectrode Ensembles. Bull. Korean Chem. Soc., 30(2), 454 (2009). DOI: https://doi.org/10.5012/bkcs.2009.30.2.454
  20. Zhuang Z, Li J, Xu R, Xiao D. Electrochemical Detection of Dopamine in the Presence of Ascorbic Acid Using Overoxidized Polypyrrole/Graphene Modified Electrodes. Int. J. Electrochem. Sci., 6, 2149 (2011). DOI: 10.1016/j.talanta.2012.05.013
  21. Shi W, Liu C, Song Y, Lin N, Zhou S, Cai X. An ascorbic acid amperometric sensor using over-oxidized polypyrrole and palladium nanoparticles composites. Biosens. Bioelectron. 38(1), 100 (2012). DOI:10.1016/j.bios.2012.05.004
  22. Samseya J, Srinivasan R, Chang YT, Tsao CW, Vasantha VS. Fabrication and characterisation of high performance polypyrrole modified microarray sensor for ascorbic acid determination. Anal. Chim. Acta. 793, 11 (2013). DOI: 10.1016/j.aca.2013.06.049.
  23. Ye D, Luo L, Ding Y, Chena Q, Liu X. A novel nitrite sensor based on graphene/polypyrrole/chitosan nanocomposite modified glassy carbon electrode. Analyst, 136, 4563 (2011). DOI: 10.1039/C1AN15486A
  24. Raicopol M., Pruna A, Damian C, Pilan L. Functionalized singlewalled carbon nanotubes/polypyrrole composites for amperometric glucose biosensors. Nanoscale Research Letters, 8, 316 (2013). DOI: 10.1186/1556-276X-8-316
  25. Devadas B, Rajkumar M, Chen SM, Saraswathi R. Electrochemically Reduced Graphene Oxide/ Neodymium Hexacyanoferrate Modified Electrodes for the Electrochemical Detection of Paracetomol. Int. J. Electrochem. Sci. 7, 3339 (2012). www.electrochemsci.org/papers/vol7/7043339.pdf
  26. Giribabu K, Suresh R, Manigandan R, Vijayalakshmi L, Stephen A, Narayanan V. Synthesis of reduced graphene oxide and its electrochemical sensing of 4-nitrophenol. AIP Conference Proceedings, 1512, 400 (2013). DOI: http://dx.doi.org/10.1063/1.4791080
  27. Zhou N., J. Li, H. Chen, C. Liao and L. Chen. A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of $Hg^{2+}$. Analyst, 138, 1091 (2013). DOI: 10.1039/c2an36405k.
  28. Dang X, Zheng J, Hu C, Wang S, Hu S. Hemoglobin biosensor based on reduced graphite oxide modified gold electrode array printed on paper. Chemical Sensors, 3(17), 1 (2013). DOI: http://www.cognizure.com/abstract.aspx?p=107637252
  29. Jiang X, Chen K, Wang J, Shao K, Fu T, Shao F, Lu D, Liang J, Foda MF, Han H. Solid-state voltammetry-based electrochemical immune sensor for Escherichia coli using graphene oxide-Ag nanoparticle composites as labels. Analyst, 138, 3388 (2013). DOI: 10.1039/c3an00056g.
  30. Lee JH, El-Said WA, Oh BK, Choi JW. Enzyme-free glucose sensor based on Au nanobouquet fabricated indium tin oxide electrode. J Nanosci Nanotechnol. 14(11), 8432 (2014). DOI:10.1166/jnn.2014.9921
  31. Baloach QU, Tahira A, Mallah AB, Abro MI, Uddin S, Willander M, Ibupoto ZH. A Robust, Enzyme-Free Glucose Sensor Based on Lysine-Assisted CuO Nanostructures. Sensors (Basel). 16(11), 1878 (2016). DOI: 10.3390/s16111878
  32. Bai Y, Yang W, Sun Y, Sun C. Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sensors and Actuators B: Chemical, 134(2), 471 (2008). DOI: 10.1016/j.snb.2008.05.028
  33. Mudila H, Zaidi MGH, Rana S, Joshi V, Alam S. Enhanced Electrocapacitive Performance of Graphene Oxide Polypyrrole Nanocomposites. Int. J. of Chemical and Analytical Science. 4, 139 (2013). DOI:10.1016/j.ijcas.2013.09.001
  34. Piccinini E, Bliem C, Rozman CR, Battaglini F, Azzaroni O. Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosensors and Bioelectronics 92, 661 (2017). DOI: https://doi.org/10.1016/j.bios.2016.10.035
  35. Prissanaroon OW, Sirivat A, Pigram, PJ, Brack N. Potentiometric Urea Biosensor Based on a Urease-Immobilized Polypyrrole. Macromolecular Symposia 354(1), 334, (2015). DOI: 10.1002/masy.201400087.
  36. Sobon G, Sotor J, Jagiello J, Kozinski R, Zdrojek M, Holdynski M, Paletko P, Boguslawski J, Lipinska L, Abramski KM. Graphene oxide vs. reduced graphene oxide as saturable absorbers for Erdoped passively mode-locked fiber laser. Opt Express. 20(17), 19463 (2012). DOI: 10.1364/OE.20.019463.
  37. Bose S, Kim NH, Kuila T, Lau T and Lee JH. Electrochemical performance of a graphene-polypyrrole nanocomposite as a supercapacitor electrode. Nanotechnology, 22, 295202, 2011. https://doi.org/10.1088/0957-4484/22/29/295202
  38. Graphene oxide and reduced graphene oxide studied by the XRD, TEM and electron spectroscopy methods. L. Stobinski, B. Lesiak, A. Malolepszy, M. Mazurkiewicz, B. Mierzwa, J. Zemek, P. Jiricek, I. Bieloshapka. Journal of Electron Spectroscopy and Related Phenomena. 195, 145 (2014). DOI: http://dx.doi.org/10.1016/j.elspec.2014.07.003
  39. Unnikrishnan L, Madamana P, Mohanty S, Nayak SK. Polysulfone/C30B Nanocomposite Membranes for Fuel Cell Applications: Effect of Various Sulfonating Agents. Polymer-Plastics Technology and Engineering, 51, 568 (2012) DOI:10.1080/03602559.2012.654580
  40. Mudila H, Rana S, Zaidi MGH, Alam S. Enhanced electrocapacitive performance and high power density of polypyrrole/graphene oxide nanocomposites prepared at reduced temperature. Carbon Letters 15(3), 171 (2014). DOI: http://dx.doi.org/10.5714/CL.2014.15.3.171
  41. Mudila H, Joshi V, Rana S, Zaidi MGH, Alam S. Comparative electrochemical study of sulphonated polysulphone binded graphene oxide supercapacitor in two electrolytes. Carbon Letters, 18, 43 (2016). DOI: http://dx.doi.org/10.5714/CL.2016.18.043
  42. Manea F, Pop A, Radovan C, Malchev P, Bebeselea A, Burtica G, Picken S and Schoonman J. Voltammetric Detection of Urea on an Ag-Modified Zeolite-Expanded Graphite-Epoxy Composite Electrode. Sensors 8, 5806, 2008. DOI: 10.3390/s8095806.