DOI QR코드

DOI QR Code

Improving amber suppression activity of an orthogonal pair of Saccharomyces cerevisiae tyrosyl-tRNA synthetase and a variant of E. coli initiator tRNA, fMam tRNACUA, for the efficient incorporation of unnatural amino acids

효율적인 비천연 아민노산 도입을 위한 효모균 타이로신-tRNA 합성효소와 대장균 시작 tRNA 변이체의 엠버써프레션 활성증가

  • Tekalign, Eyob (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Oh, Ju-Eon (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies) ;
  • Park, Jungchan (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
  • 이욥테칼린 (한국외국어대학교 생명공학과) ;
  • 오주연 (한국외국어대학교 생명공학과) ;
  • 박중찬 (한국외국어대학교 생명공학과)
  • Received : 2018.12.04
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

The orthogonal pair of Saccharomyces cerevisiae tyrosyl-tRNA synthetase (Sc YRS) and a variant of E. coli initiator tRNA, fMam $tRNA_{CUA}$ which recognizes the amber stop codon is an effective tool for site-specific incorporation of unnatural amino acids into the protein in E. coli. To evolve the amber suppression activity of the orthogonal pair, we generated a mutant library of Sc YRS by randomizing two amino acids at 320 and 321 which involve recognition of the first base of anticodon in fMam $tRNA_{CUA}$. Two positive clones are selected from the library screening with chloramphenicol resistance mediated by amber suppression. They showed growth resistance against high concentration of chloramphenicol and their $IC_{50}$ values were approximately 1.7~2.3 fold higher than the wild type YRS. In vivo amber suppression assay reveals that mutant YRS-3 (mYRS-3) clone containing amino acid substitutions of P320A and D321A showed 6.5-fold higher activity of amber suppression compared with the wild type. In addition, in vitro aminoacylation kinetics of mYRS-3 also showed approximately 7-fold higher activity than the wild type, and the enhancement was mainly due to the increase of tRNA binding affinity. These results demonstrate that optimization of anticodon recognition by engineered aminoacyl tRNA synthetase improves the efficiency of unnatural amino acid incorporation in response to nonsense codon.

효모균 타이로실-tRNA 합성효소(Sc YRS)와 엠버 멈춤코돈을 인식하는 대장균 시작tRNA 변이체(fMam $tRNA_{CUA}$)쌍은 대장균에서 단백질 생합성시 원하는 특정 위치에 비천연아미노산을 도입하는데 활용된다. Sc YRS/fMam $tRNA_{CUA}$쌍의 엠버써프레션 활성을 높이기 위해 fMam $tRNA_{CUA}$의 첫번째 안티코돈 염기를 인식하는 Sc YRS의 320번, 321번 아미노산 잔기를 암호화하는 염기서열을 무작위로 돌연변이시킨 라이브러리를 제작하였다. 엠버써프레션에 의한 클로람페니콜 저항성을 이용해 라이브러리를 탐색하여 활성이 향상된 2개의 돌연변이주를 선별하였다. 이들의 클로람페니콜 저항성 성장의 $IC_{50}$값은 야생형 YRS보다 1.7~2.3배 높았으며, in vivo 엠버써프레션 활성을 비교한 결과 3~6.5배의 활성 증가가 나타났다. 높은 활성을 보인 mYRS-3 (P320A/D321A) 단백질의 fMam $tRNA_{CUA}$에 대한 in vitro aminoacylation kinetics 분석은 야생형보다 약 7배 높은 효소활성을 보였으며, 이는 주로 기질인 fMam $tRNA_{CUA}$에 대한 결합 친화도가 증가하여 나타났다. 이런 접근법을 이용하여 다양한 종류의 비천연 아미노산 도입에 활용되는 aminoacyl-tRNA 합성효소의 엠버써프레션 활성을 높임으로써 엠버 멈춤코돈을 이용한 비천연 아미노산 도입 효율성을 높일 수 있을 것이다.

Keywords

MSMHBQ_2018_v54n4_420_f0001.png 이미지

Fig. 1. Generation of a random mutation library of Sc YRS at P320 and D321 residues.

MSMHBQ_2018_v54n4_420_f0002.png 이미지

Fig. 2. Amber suppression activity of mutant YRS clones.

MSMHBQ_2018_v54n4_420_f0003.png 이미지

Fig. 3. Tyrosylation kinetics of wild type YRS and mYRS-3 to fMam tRNACUA.

Table 1. Amino acid sequences of mutant YRS and their IC50 values of chloramphenicol

MSMHBQ_2018_v54n4_420_t0001.png 이미지

References

  1. Anderson JC, Wu N, Santoro SW, Lakshman V, King DS, and Schultz PG. 2004. An expanded genetic code with a functional quadruplet codon. Proc. Natl. Acad. Sci. USA 101, 7566-7571. https://doi.org/10.1073/pnas.0401517101
  2. Chin JW. 2017. Expanding and reprogramming the genetic code. Nature 550, 53-60. https://doi.org/10.1038/nature24031
  3. Chow CM and RajBhandary UL. 1993. Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA synthetase gene. J. Biol. Chem. 268, 12855-12863.
  4. Edan DS, Choi I, and Park J. 2014. Establishment of a selection system for the site-specific incorporation of unnatural amino acids into protein. Korean J. Microbiol. 50, 1-7. https://doi.org/10.7845/kjm.2014.4012
  5. Kim KT, Park MY, and Park J. 2009. Establishment of an in vivo reporter system for the evaluation of amber suppression activity in Escherichia coli. Korean J. Microbiol. 45, 215-221.
  6. Kobayashi T, Nureki O, Ishitani R, Yaremchuk A, Tukalo M, Cusack S, Sakamoto K, and Yokoyama S. 2003. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion. Nat. Struct. Mol. Biol. 10, 425-432. https://doi.org/10.1038/nsb934
  7. Kowal AK, Kohren C, and RajBhandary UL. 2001. Twenty-first aminoacyl-tRNA synthetase suppressor tRNA pair for possible use in the site-specific incorporation of amino acid analogs into proteins in eukaryotes and in eubacteria. Proc. Natl. Acad. Sci. USA 98, 2268-2273. https://doi.org/10.1073/pnas.031488298
  8. Liu DR, Magliery TJ, Pastrnak M, and Schultz PG. 1997. Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into protein in vivo. Proc. Natl. Acad. Sci. USA 94, 10092-10097. https://doi.org/10.1073/pnas.94.19.10092
  9. Liu CC and Schultz PG. 2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413-444. https://doi.org/10.1146/annurev.biochem.052308.105824
  10. Mukai T, Lajoie MJ, Englert M, and Soll D. 2017. Rewriting the genetic code. Annu. Rev. Microbiol. 71, 557-577. https://doi.org/10.1146/annurev-micro-090816-093247
  11. Nakamura Y, Gojobori T, and Ikemura T. 2000. Code usage tabulated from international DNA sequence database status for the year 2000. Nucleic Acids Res. 28, 292-292. https://doi.org/10.1093/nar/28.1.292
  12. Ohno S, Yokogawa T, and Nishikawa K. 2001. Changing the amino acid specific of yeast tyrosyl-tRNA synthetase by genetic engineering. J. Biochem. 130, 417-423. https://doi.org/10.1093/oxfordjournals.jbchem.a003001
  13. Pastrnak M, Magliery TJ, and Schultz PG. 2000. A new orthogonal suppressor tRNA/aminoacyl-tRNA synthetase pair for evolving an organism with an expanded genetic code. Helv. Chem. Acta 83, 2277-2286. https://doi.org/10.1002/1522-2675(20000906)83:9<2277::AID-HLCA2277>3.0.CO;2-L
  14. Tsunoda M, Kusakabe Y, Tanaka N, Ohno S, Nakamura M, Senda T, Moriguchi T, Asai N, Sekine M, Yokogawa T, et al. 2007. Structural basis for recognition of cognate tRNA by tyrosyltRNA synthetase from three kingdoms. Nucleic Acids Res. 35, 4289-4300. https://doi.org/10.1093/nar/gkm417
  15. Wang L, Brock A, Herberich B, and Schultz PG. 2001. Expanding the genetic code of Escherichia coli. Science 292, 498-500. https://doi.org/10.1126/science.1060077
  16. Wang N, Ju T, Niu W, and Guo J. 2015. Fine-tuning interaction between aminoacyl-tRNA synthetase and tRNA for efficient synthesis of proteins containing unnatural amino acids. ACS Synth. Biol. 4, 207-212. https://doi.org/10.1021/sb500195w