DOI QR코드

DOI QR Code

Investigation of bacteria in the agricultural by-products imported for the use as media materials in mushroom cultivation

버섯재배 배지재료용 수입 농업부산물에서의 세균 조사 연구

  • Kim, Jun Young (Department of Microbiology and Institute of Biodiversity, College of Natural Science, Dankook University) ;
  • Kim, Susan (Department of Microbiology and Institute of Biodiversity, College of Natural Science, Dankook University) ;
  • Kim, Seong Hwan (Department of Microbiology and Institute of Biodiversity, College of Natural Science, Dankook University)
  • 김준영 (단국대학교 자연과학대학 미생물학과 및 생물다양성연구소) ;
  • 김수산 (단국대학교 자연과학대학 미생물학과 및 생물다양성연구소) ;
  • 김성환 (단국대학교 자연과학대학 미생물학과 및 생물다양성연구소)
  • Received : 2018.11.19
  • Accepted : 2018.11.29
  • Published : 2018.12.31

Abstract

It is urgently required to construct safety data on agricultural by-products imported for use as medium materials for domestic mushroom production. However, research on microorganisms is insufficient. This study was conducted to investigate the presence of bacteria that have the possibility of harmful effects on human, plants and mushroom in wheat straw, peatmoss, cottonseed hull, cottonseed meal, and beet pulp imported from Australia, Canada, China, Egypt, Germany. Bacteria were found in the range of $1.35{\times}10^2$ to $8.34{\times}10^6CFU/g$. As a result of 16S rDNA sequence analysis, total of 19 genera and 45 species of bacteria were identified. Bacillus genus was dominant, followed by Paenibacillus genus. At the species level, diverse species was in the order of Firmicute, Proteobacteria and Actinobacteria. Regarding the agricultural by-products, straw and peat moss had more diverse bacteria than other agricultural by-products. Among the indentified bacteria, 6 species of 5 genera (Enterobacter asburiae, Enterobacter ludwigii, Stenotrophomonas maltophilia, Pseudomonas monteilii, Bacillus anthracis, and Cellulosimicrobium funkei) were present as potent harmful bacteria to human. Surprisingly, both the human and plant pathogenic Klebsiella pneumoniae subsp. pneumonia was present. Bacillus altitudinis was present as a plant pathogen. Lysinibacillus sphaericus, an insect pathogen, and Ochrobactrum pseudogrignonense, a mushroom pathogen, were also present. The results of this study confirmed that several kinds of pathogenic bacteria were present in the agricultural by-products for the mushroom cultivation medium imported into Korea. Our work suggests that hygiene inspection and management is urgently needed for imported agricultural by-products to be safely used for mushroom production.

국내 버섯 생산용 배지재료 용도로 수입되는 밀짚, 피트모스, 비트펄프, 면실피, 면실박 등 농업부산물에 대한 안전성 자료 구축이 시급히 요구되고 있다. 그러나 미생물에 대한 조사 연구는 미흡한 실정이다. 이에 따라 본 연구는 2년 동안 호주, 캐나다, 중국, 이집트, 독일, 인도, 우크라이나에서 수입한 농업 부산물인 밀짚, 피트모스, 면실박, 면실피, 비트펄프를 대상으로 인체, 식물, 버섯에 유해가능성 있는 세균의 존재 여부를 확인하기 위해 수행하였다. 조사된 수입된 농업부산물에는 $1.35{\times}10^2$에서 $8.34{\times}10^6CFU/g$ 농도 범위로 세균이 존재하였다. 세균을 분리하여 16S rDNA를 분석한 결과 총 19속 45종의 세균이 동정되었다. Basillus 속 세균이 우점으로 존재 하였고 그 다음으로 Paenibacillus 속 세균이 많이 존재하였다. 종 수준에서는 Firmicutes, Proteobacteria, Actinobacteria 그룹에 속하는 순으로 다양성이 존재하였다. 농업부산물 별로 볼 때는 밀짚과 피트모스에서 더 다양한 속의 세균들이 존재하였다. 이 중 인체 유해성이 보고된 세균은 5속 6종으로서 Enterobacter asburiae, Enterobacter ludwigii, Stenotrophomonas maltophilia, Pseudomonas monteilii, Bacillus anthracis, Cellulosimicrobium funkei가 존재하였다. 놀랍게도 인체병원균이면서 동시에 식물 병원균으로 보고된 Klebsiella pneumoniae subsp. pneumonia 그리고 식물병원균 Bacillus altitudinis가 존재하였다.또한 곤충 병원성의 Lysinibacillus sphaericus와 버섯 병원성의 Ochrobactrum pseudogrignonense가 존재하였다. 본 연구 결과는 국내에 수입되고 있는 버섯재배 배지용 농업부산물에 여러 종류의 잠재성 있는 병원성 세균이 존재함을 확인하였다. 이는 수입되고 있는 농업부산물이 버섯생산에 안전하게 사용되기 위해서는 위생 검사와 관리가 시급히 필요함을 시사한다.

Keywords

MSMHBQ_2018_v54n4_410_f0001.png 이미지

Fig. 1. Phylogenetic analysis of the isolated bacteria in this study based on the 16S rDNA sequences.

MSMHBQ_2018_v54n4_410_f0002.png 이미지

Fig. 2. Pie graph for the frequency of bacterial genus isolated from the imported agricultural by-products in 2015 to 2017.

Table 1. Bacterial concentration in the agricultural by-products imported for the use as media materials in mushroom cultivation

MSMHBQ_2018_v54n4_410_t0001.png 이미지

Table 2. Known properties of the identified bacteria isolated from the agricultural by-products imported in 2016 for the use as media materials in mushroom cultivation

MSMHBQ_2018_v54n4_410_t0002.png 이미지

Table 3. Known properties of the identified bacteria isolated from the agricultural by-products imported in 2017 for the use as media materials in mushroom cultivation

MSMHBQ_2018_v54n4_410_t0003.png 이미지

References

  1. Berry C. 2012. The bacterium, Lysinibacillus sphaericus, as an insect pathogen. J. Invertebr. Pathol. 109, 1-10. https://doi.org/10.1016/j.jip.2011.11.008
  2. Bosmans L, De Bruijn I, Gerards S, Moerkens R, Van Looveren L, Wittemans L, Van Calenberge B, Paeleman A, Van Kerckhove S, De Mot R, et al. 2017. Potential for biocontrol of hairy root disease by a Paenibacillus clade. Front. Microbiol. 8, 447.
  3. Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK, Bustos Carrillo FA, Colwell R, Easterday WR, Ganz HH, Kamath PL, et al. 2018. Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biol. Rev. Camb. Philos. Soc. 93, 1813-1831. https://doi.org/10.1111/brv.12420
  4. Chandel S, Allan EJ, and Woodward S. 2009. Biological control of Fusarium oxysporum f.sp. lycopersici on tomato by Brevibacillus brevis. J. Phytopathol. 158, 470-478.
  5. Cohen SN, Chang AC, and Hsu L. 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. USA 69, 2110-2114. https://doi.org/10.1073/pnas.69.8.2110
  6. Elbanna K, Elnaggar S, and Bakeer A. 2014. Characterization of Bacillus altitudinis as a new causative agent of bacterial soft rot. J. Phytopathol. 162, 712-722. https://doi.org/10.1111/jph.12250
  7. Fan B, Blom J, Klenk HP, and Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "Operational Group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol. 8, 22.
  8. Felsenstein J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39, 783-791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x
  9. Flores-Carrero A, Labrador I, Paniz-Mondolfi A, Peaper DR, Towle D, and Araque M. 2016. Nosocomial outbreak of extended-spectrum ${\beta}$-lactamase-producing Enterobacter ludwigii co-harbouring CTX-M-8, SHV-12 and TEM-15 in a neonatal intensive care unit in Venezuela. J. Glob. Antimicrob. Resist. 7, 114-118. https://doi.org/10.1016/j.jgar.2016.08.006
  10. Gao X, Zhang M, Li X, Han Y, Wu F, and Liu Y. 2018. Effects of a probiotic (Bacillus licheniformis) on the growth, immunity, and disease resistance of Haliotis discus hannai Ino. Fish Shellfish Immunol. 76, 143-152. https://doi.org/10.1016/j.fsi.2018.02.028
  11. Gautam R and Sharma J. 2012. Optimization, purification of cellulase produced from Bacillus subtilis subsp. inaquosorum under solid state fermentation and its potential applications in denim industry. Int. J. Sci. Res. (Raipur) 3, 1759-1763.
  12. Jang MJ, Lee YH, Kang YZ, and Ju YC. 2014. Effect of albasia sawdust in Pleurotus ostreatus by bottle cultivation. J. Mushroom 12, 8-11. https://doi.org/10.14480/JM.2014.12.1.8
  13. Kaito S, Sekiya N, Najima Y, Sano N, Horiguchi S, Kakihana K, Hishima T, and Ohashi K. 2018. Fatal neutropenic enterocolitis caused by Stenotrophomonas maltophilia: A rare and underrecognized entity. Intern. Med. DOI: 10.2169/internalmedicine.1227-18.
  14. Kim JJ, Lee SW, Park KW, Seo KI, and Yee ST. 2012. Effect of Flammulina velutipes extracts cultivated with oriental herbal plants on the activation of immune cells. J. Life Sci. 22, 828-836. https://doi.org/10.5352/JLS.2012.22.6.828
  15. Kim JY, Lee GS, Lee CJ, and Kim SH. 2017. Investigation of heavy metals, residual pesticides and nutrient component from agricultural by-products imported as medium substrates for mushroom cultivation. Korean J. Environ. Agric. 36, 217-221. https://doi.org/10.5338/KJEA.2017.36.3.24
  16. Kim MK, Sathiyaraj S, Pulla RK, and Yang DC. 2009. Brevibacillus panacihumi sp. nov., a ${\beta}$-glucosidase-producing bacterium. Int. J. Syst. Evol. Microbiol. 59, 1227-1231. https://doi.org/10.1099/ijs.0.001248-0
  17. Kimura M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120. https://doi.org/10.1007/BF01731581
  18. Koth K, Boniface J, Chance EA, and Hanes MC. 2012. Enterobacter asburiae and Aeromonas hydrophila: Soft tissue infection requiring debridement. Orthopedics 35, e996-e999. https://doi.org/10.3928/01477447-20120525-52
  19. Kumar S, Stecher G, and Tamura K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
  20. Kwon HW, Min SW, Lee GS, Kim BY, Lee CJ, and Kim SH. 2015. Investigation of bacteria in imported supplemental substrates for mushroom cultivation media. J. Odor Indoor Environ. 14, 225-233. https://doi.org/10.15250/joie.2015.14.3.225
  21. Latzer IT, Paret G, Rubinstein M, Keller N, Barkai G, and Pessach IM. 2018. Management of Stenotrophomonas maltophilia infections in critically III children. Pediatr. Infect. Dis. J. 37, 981-986. https://doi.org/10.1097/INF.0000000000001959
  22. Lee GS, Kim JY, Kim BY, Hyun MW, Lee CJ, Kong WS, and Kim SH. 2016. Detection of fungi in imported supplemental substrates for mushroom cultivation media. J. Odor Indoor Environ. 15, 337-344. https://doi.org/10.15250/joie.2016.15.4.337
  23. Lee S, Ka JO, and Song HG. 2012. Growth promotion of Xanthium italicum by application of rhizobacterial isolates of Bacillus aryabhattai in microcosm soil. J. Microbiol. 50, 45-49. https://doi.org/10.1007/s12275-012-1415-z
  24. Liu PP, Jiang X, Bi D, Xie Y, Tai C, Deng Z, Rajakumar K, and Ou HY. 2012. Complete genome sequence of Klebsiella pneumoniae subsp. pneumoniae HS11286, a multidrug-resistant strain isolated from human sputum. J. Bacteriol. 194, 1841-1842. https://doi.org/10.1128/JB.00043-12
  25. Mannaa M, Oh JY, and Kim KD. 2017. Biocontrol activity of volatileproducing Bacillus megaterium and Pseudomonas protegens against Aspergillus flavus and aflatoxin production on stored rice grains. Mycobiology 45, 213-219. https://doi.org/10.5941/MYCO.2017.45.3.213
  26. Mayer FL and Kronstad JW. 2017. Disarming fungal pathogens: Bacillus safensis inhibits virulence factor production and biofilm formation by Cryptococcus neoformans and Candida albicans. MBio 8, e01537-17.
  27. Nam MH, Park MS, Kim HG, and Yoo SJ. 2009. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J. Microbiol. Biotechnol. 19, 520-524. https://doi.org/10.4014/jmb.0805.333
  28. Nicolau Korres AM, Aquije GMDFV, Buss DS, Ventura JA, Fernandes PMB, and Fernandes AAR. 2013. Comparison of biofilm and attachment mechanisms of a phytopathological and clinical isolate of Klebsiella pneumoniae subsp. pneumoniae. Sci. World J. 2013, 925375.
  29. Okaiyeto K, Nwodo UU, Mabinya LV, and Okoh AL. 2015. Bacillus toyonensis strain AEMREG6, a bacterium isolated from south African marine environment sediment samples produces a glycoprotein bioflocculant. Molecules 20, 5239-5259. https://doi.org/10.3390/molecules20035239
  30. Ortiz‑Castro R, Valencia‑Cantero E, and Lopez‑Bucio J. 2008. Plant growth promotion by Bacillus megaterium involves cytokinin signaling. Plant Signal. Behav. 3, 263-265. https://doi.org/10.4161/psb.3.4.5204
  31. Padgham JL and Sikora RA. 2007. Biological control potential and modes of action of Bacillus megaterium against Meloidogyne graminicola on rice. Crop Prot. 26, 971-977. https://doi.org/10.1016/j.cropro.2006.09.004
  32. Perez JAM, Garcia-Ribera R, Quesada T, Aguilera M, Ramos-Cormenzana A, and Monteoliva-Sanchez M. 2008. Biosorption of heavy metals by the exopolysaccharide produced by Paenibacillus jamilae. World J. Microbiol. Biotechnol. 24, 2699-2704. https://doi.org/10.1007/s11274-008-9800-9
  33. Petkar H, Li A, Bunce N, Duffy K, Malnick H, and Shah JJ. 2011. Cellulosimicrobium funkei: first report of infection in a nonimmunocompromised patient and useful phenotypic tests in differentiation from Cellulosimicrobium cellulans and Cellulosimicrobium terreum. J. Clin. Microbiol. 49, 1175-1178. https://doi.org/10.1128/JCM.01103-10
  34. Ramesh D, Souissi S, and Ahamed TS. 2017. Effects of the potential probiotics Bacillus aerophilus KADR3 in inducing immunity and disease resistance in Labeo rohita. Fish Shellfish Immunol. 70, 408-415. https://doi.org/10.1016/j.fsi.2017.09.037
  35. Regmi S, Yoo HY, Choi YH, Choi YS, and Yoo JC. 2017. Prospects for bio-industrial application of an extremely alkaline mannanase from Bacillus subtilis subsp. inaquosorum CSB31. Biotechonol. J. 12, 1700113.
  36. Saitou N and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
  37. Shariff M and Beri K. 2017. Exacerbation of bronchiectasis by Pseudomonas monteilii: a case report. BMC Infect. Dis. 17, 511. https://doi.org/10.1186/s12879-017-2600-9
  38. Singh RS, Singh RP, and Yadav M. 2013. Molecular and biochemical characterization of a new endoinulinase producing bacterial strain of Bacillus safensis AS-08. Biologia 68, 1028-1033.
  39. Stoecker MA, Herwig RP, and Staley JS. 1994. Rhodococcus zopfii sp. nov., a toxicant-degrading bacterium. Int. J. Syst. Bacteriol. 44, 106-110. https://doi.org/10.1099/00207713-44-1-106
  40. Tian J, Yu C, Xue Y, Zhao R, Wang J, and Chen L. 2016. Performance of trichlorfon degradation by a novel Bacillus tequilensis strain PA F-3 and its proposed biodegradation pathway. Biodegradation 27, 265-276. https://doi.org/10.1007/s10532-016-9771-8
  41. Watanabe T, Oyanagi W, Suzuki K, and Tanaka H. 1990. Chitinase system of Bacillus circulans WL-12 and importance of chitinase Al in chitin degradation. J. Bacteriol. 172, 4017-4022. https://doi.org/10.1128/jb.172.7.4017-4022.1990
  42. Weid IVD, Alviano DS, Santos ALS, Soares RMA, Alviano CS, and Seldin L. 2003. Antimicrobial activity of Paenibacillus peoriae strain NRRL BD-62 against a broad spectrum of phytopathogenic bacteria and fungi. J. Appl. Microbiol. 95, 1143-1151. https://doi.org/10.1046/j.1365-2672.2003.02097.x
  43. Wu Z, Peng W, He X, Wang B, Gan B, and Zhang X. 2016. Mushroom tumor: a new disease on Flammulina velutipes caused by Ochrobactrum pseudogrignonense. FEMS Microbiol. Lett. 363, fnv226. https://doi.org/10.1093/femsle/fnv226