• Title/Summary/Keyword: aminoacyl-tRNA synthetase

Search Result 21, Processing Time 0.032 seconds

Biochemical Studios on the Chemical Components of Korean Ginseng:(I) Effects of Components of Ginseng on the Activity of Aminoacyl-tRNA Synthetase (한국 인삼 성분들에 관한 생화학적 연구 (1) 인삼 성분들이 아미노아실-tRNA합성 효소의 활동성에 미치는 영향)

  • 장세희;박인원
    • Journal of Ginseng Research
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 1976
  • Ginseng extracts were frnctionelod into several fractions with carious organic solvents, and the effects of these fractions on the activity of aminoacyl-tRHA synthetase was examined. Fractions which showed positive effect on the activity of the aminoacyl-tRNA synthetase were obtained both from white ginseng and red ginseng. The total methanol extract of whit ginseng and the ether extract from the total methanol extract of red ginseng gave Positive results. Therefore it may be Presumed that the Positive components have rather nonpolar nature.

  • PDF

Screening of New Antibiotics Inhibiting Bacterial Methionyl-tRNA Synthetase (세균의 Methionyl-tRNA Synthetase를 저해하는 새로운 항생물질의 스크리닝)

  • 곽진환;조영준;송난규
    • YAKHAK HOEJI
    • /
    • v.45 no.3
    • /
    • pp.245-250
    • /
    • 2001
  • Aminoacyl tRNA synthetases of bacteria are known as potential targets for new anti-microbial agents. To isolate new inhibitors of bacterial methionyl-tRNA synthetases from natural sources, a new target-oriented screening system using whole cells which are over-expressing a target enzyme was developed. Approximately 8,000 culture broths of microorganisms from soils were tested by this screening system. Among them, ten culture broths was found to contain inhibitory activity against methionyl -tRNA synthetases of Escherichia coli. For the validation of the screening system, this new method was compared with in vitro enzymatic method. Seven out of 10 culture broths showed inhibitory activity against methionyl-tRNA synthetases of E. coli. This result showed that the new screening system was comparable to the enzyme assay. Thus we believe that our screening system as a new method can be applied for the screening of new antibiotics inhibiting bacterial methionyl-tRNA synthetases from natural products.

  • PDF

Aminoacyl-tRNA Synthetase Cofactor, p43, is a Novel Cytokine and an Immune Modulator: Implications for Autoimmune Diseases and Bacterial Infections

  • Kim, Sung-Hoon
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.77-77
    • /
    • 2003
  • p43 is a protein with complex biological activities. It is first found as a protein associated with macromolecular tRNA synthetase complex. Within this complex, p43 specifically interacts with arginyl-tRNA synthetase to help the substrate tRNA binding to the enzyme. It is also necessary for the cellular stability of arginyl-tRNA synthetase and the molecular association of a few complex-forming tRNA synthetases. (omitted)

  • PDF

Establishment of an In Vivo Report System for the Evaluation of Amber Suppression Activity in Escherichia coli (대장균에서 비천연 아미노산의 위치특이적 삽입을 위한 Amber Suppressor tRNA와 Aminoacyl-tRNA Synthetase의 Amber Suppression 활성측정시스템 개발)

  • Kim, Kyung-Tae;Park, Mi-Young;Park, Jung-Chan
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.215-221
    • /
    • 2009
  • Site-specific incorporation of unnatural amino acids into proteins in vivo can be achieved by co-expression of an orthogonal pair of suppressor tRNA and engineered aminoacyl-tRNA synthetase (ARS) that specifically ligates an unnatural amino acid to the suppressor tRNA. As a step to establish this technique, here we generated an Escherichia coli reporter strain DH10B(Tn:lacZam) by integrating amber mutated lacZ gene into the chromosome of E. coli DH10B strain. In vivo expression of E. coli amber suppressor $tRNA^{Gln}$ produced blue colonies in culture plates containing X-Gal as well as dramatically increased $\beta$-galactosidase activity. In addition, expression of an orthogonal pair of Saccharomyces cerevisiae suppressor $tRNA^{Tyr}$ and tyrosyl-tRNA synthetase also produced blue colonies as well as moderate increase of $\beta$-galactosidase activity. These data demonstrate that our reporter strain will provide an efficient method to assess amber suppression in both qualitative and quantitative manners.

Structure of N-terminal Extension in Human Aspartyl-tRNA Synthetase

  • Park, Jin-Young;Kim, Sunghoon;Chaejoon Cheong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1998.06a
    • /
    • pp.20-20
    • /
    • 1998
  • In mammalian cells, nine aminoacyl-tRNA synthetase, including aspartyl-tRNA synthetase, are associated within a multienzyme complex. Human aspartyl-tRNA synthetase contains a unique N-terminal polypeptide that is thought to be responsible for the complex formation.(omitted)

  • PDF

Effects of Polyamines on Activities of Elongation Factors, Phenylalanyl-tRNA Synthetase and tRNA in Protein Biosynthesis (백 생명성에 관계하는 신장요인과 Phenylalanyl-tRNA Synthetase 및 tRNA 활성에 미치는 Polyamine의 효과)

  • Woong Seop Sim
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.325-332
    • /
    • 1994
  • The effects of polyamines on the activities of elongation factors EF-1 and EF-2, phenylalanyl-tRNA synthetase, and tRNA were investigated. The activities of EF-1 and EF-2 were mostly stimulated by spermidine among three kinds of polyamines. The activities of EF-1 and EF-2 were investigated in the presence of spermidine by 230 and 181%, respectively. The activity of phenylalanyl-tRNA synthetase was slightly increased in the presence of polyamines. The effect of spermine on the synthetase was higher than that of the other polyamines. The tRNA activity in the presence fo polyamines was increased by 206% with spermidine, by 144% with spermine, and by 114% with putrescine. According to these results, it is concluded that polyamines in higher plants stimulate the protein biosynthesis by promoting the activities of elongation factors EF-1 and EF-2, aminoacyl-tRNA synthetases, and tRNAs, but the effects of polyamines on the various components for protein biosynthesis are different in according to the kind of polyamines.

  • PDF

Improving amber suppression activity of an orthogonal pair of Saccharomyces cerevisiae tyrosyl-tRNA synthetase and a variant of E. coli initiator tRNA, fMam tRNACUA, for the efficient incorporation of unnatural amino acids (효율적인 비천연 아민노산 도입을 위한 효모균 타이로신-tRNA 합성효소와 대장균 시작 tRNA 변이체의 엠버써프레션 활성증가)

  • Tekalign, Eyob;Oh, Ju-Eon;Park, Jungchan
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.420-427
    • /
    • 2018
  • The orthogonal pair of Saccharomyces cerevisiae tyrosyl-tRNA synthetase (Sc YRS) and a variant of E. coli initiator tRNA, fMam $tRNA_{CUA}$ which recognizes the amber stop codon is an effective tool for site-specific incorporation of unnatural amino acids into the protein in E. coli. To evolve the amber suppression activity of the orthogonal pair, we generated a mutant library of Sc YRS by randomizing two amino acids at 320 and 321 which involve recognition of the first base of anticodon in fMam $tRNA_{CUA}$. Two positive clones are selected from the library screening with chloramphenicol resistance mediated by amber suppression. They showed growth resistance against high concentration of chloramphenicol and their $IC_{50}$ values were approximately 1.7~2.3 fold higher than the wild type YRS. In vivo amber suppression assay reveals that mutant YRS-3 (mYRS-3) clone containing amino acid substitutions of P320A and D321A showed 6.5-fold higher activity of amber suppression compared with the wild type. In addition, in vitro aminoacylation kinetics of mYRS-3 also showed approximately 7-fold higher activity than the wild type, and the enhancement was mainly due to the increase of tRNA binding affinity. These results demonstrate that optimization of anticodon recognition by engineered aminoacyl tRNA synthetase improves the efficiency of unnatural amino acid incorporation in response to nonsense codon.

Transfer RNA Acceptor Stem Determinants for Specific Aminoacylation by Class II Aminoacyl-tRNA Synthetases

  • Musier, Karin
    • BMB Reports
    • /
    • v.31 no.6
    • /
    • pp.525-535
    • /
    • 1998
  • A critical step in the faithful translation of genetic information is specific tRNA recognition by aminoacyl-tRNA synthetases. These enzymes catalyze the covalent attachment of particular amino acids to the terminal adenosine of cognate tRNA substrates. In general, there is one synthetase for each of the twenty amino acids and each enzyme must discriminate against all of the cellular tRNAs that are specific for the nineteen noncognate amino acids. Primary sequence information combined with structural data have resulted in the division of the twenty synthetases into two classes. In recent years, several high-resolution co-crystal structures along with biochemical data have led to an increased understanding of tRNA recognition by synthetases of both classes. The anticodon sequence and the amino acid acceptor stem are the most common locations for critical recognition elements. This review will focus on acceptor stem discrimination by class II synthetases. In particular, the results of in vitro aminoacylation assays and site-directed and atomic group mutagenesis studies will be discussed. These studies have revealed that even subtle atomic determinants can provide signals for specific tRNA aminoacylation.

  • PDF

Establishment of a Selection System for the Site-Specific Incorporation of Unnatural Amino Acids into Protein (비천연 아미노산의 위치특이적 단백질 삽입을 위한 Amino Acyl-tRNA Synthetase 선별시스템 개발)

  • Edan, Dawood Salim;Choi, Inkyung;Park, Jungchan
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Site-specific incorporation of unnatural amino acids (SSIUA) into protein can be achieved in vivo by coexpression of an orthogonal pair of suppressor tRNA and engineered aminoacyl-tRNA synthetase (ARS) that specifically ligates an unnatural amino acid to the suppressor tRNA. As a step to develop the SSIUA technique in Escherichia coli, here we established a new 2-step screening system that can be used for selecting an ARS variant(s) that ligates an unnatural amino acid to a suppressor tRNA. A positive selection system consists of chloramphenicol acetyl transferase gene containing an amber mutation at the $27^{th}$ residue, and efficiently concentrated amber suppressible ARS with a maximum enrichment factor of $9.0{\times}10^5$. On the other hand, a negative selection system was constructed by adding multiple amber codons in front of a lethal gene encoding the control of cell death B toxin (ccdB) which acts as an inhibitory protein of bacterial topoisomerase II. Amber suppression of ccdB by an orthogonal pair of Saccharomyces cerevisiae tyrosyl-tRNA synthetase (TyrRS) and an amber suppressor tRNA significantly inhibits bacterial growth. This selection system was also able to efficiently remove amber suppressible ARS which could ligate natural amino acids to the suppressor tRNA. Thus, sequential combination of these two selection systems might be able to function as a powerful tool for selecting an ARS variant that specifically ligates an unnatural amino acid to the suppressor tRNA from an ARS mutant pool.