DOI QR코드

DOI QR Code

전력반도체 접합용 천이액상확산접합 기술

Transient Liquid Phase Diffusion Bonding Technology for Power Semiconductor Packaging

  • 이정현 (서울시립대학교 신소재공학과) ;
  • 정도현 (경북테크노파크 경량소재융복합기술센터) ;
  • 정재필 (서울시립대학교 신소재공학과)
  • Lee, Jeong-Hyun (Department of Materials Science and Engineering, University of Seoul) ;
  • Jung, Do-hyun (Lightweight Materials Technology Center, Gyeongbuk Technopark) ;
  • Jung, Jae-Pil (Department of Materials Science and Engineering, University of Seoul)
  • 투고 : 2018.12.11
  • 심사 : 2018.12.28
  • 발행 : 2018.12.31

초록

This paper shows the principles and characteristics of the transient liquid phase (TLP) bonding technology for power modules packaging. The power module is semiconductor parts that change and manage power entering electronic devices, and demand is increasing due to the advent of the fourth industrial revolution. Higher operation temperatures and increasing current density are important for the performance of power modules. Conventional power modules using Si chip have reached the limit of theoretical performance development. In addition, their efficiency is reduced at high temperature because of the low properties of Si. Therefore, Si is changed to silicon carbide (SiC) and gallium nitride (GaN). Various methods of bonding have been studied, like Ag sintering and Sn-Au solder, to keep up with the development of chips, one of which is TLP bonding. TLP bonding has the advantages in price and junction temperature over other technologies. In this paper, TLP bonding using various materials and methods is introduced. In addition, new TLP technologies that are combined with other technologies such as metal powder mixing and ultrasonic technology are also reviewed.

키워드

MOKRBW_2018_v25n4_9_f0001.png 이미지

Fig. 1. Schematic diagram of power semiconductor.

MOKRBW_2018_v25n4_9_f0002.png 이미지

Fig. 2. Schematic diagram of warpage during heating and cooling.

MOKRBW_2018_v25n4_9_f0003.png 이미지

Fig. 3. Schematic of transient liquid phase bonding process.39)

MOKRBW_2018_v25n4_9_f0004.png 이미지

Fig. 4. Cross-sectional microstructure of the joint bonded with Sn-Cu.

MOKRBW_2018_v25n4_9_f0005.png 이미지

Fig. 5. Schematic drawing showing the mechanism for the TGB process.

Table 1. Calculated surface tension of solders.24)

MOKRBW_2018_v25n4_9_t0001.png 이미지

참고문헌

  1. W. Suh, H. S. Jung, Y. H. Lee, and S. H. Choa, "Heat dissipation technology of IGBT module package", J. Microelectron. Packag. Soc., 21(1), 7 (2014). https://doi.org/10.6117/KMEPS.2014.21.1.007
  2. A. HassanFathabadi, "Novel battery/photovoltaic hybrid power source for plug-in hybrid electric vehicles", Solar. Energy., 159, 243 (2018). https://doi.org/10.1016/j.solener.2017.10.071
  3. Z. Liang, "Status and trend of automotive power packaging", Proc. 24th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Bruges, 325, IEEE Power Elec tronics Society (PELS) (2012).
  4. R. John, O. Vermesan, and R. Bayerer, "High temperature power electronics IGBT modules for electrical and hybrid vehicles", Proc. International Conference on High Tempera ture Electronics (HiTEC), Oxford, 199, International Microelectronics Assembly and Packaging Society (iMAPS) (2009).
  5. H. S. Chin, K. Y. Cheong and A. B. Ismail, "A review on die attach materials for SiC-based high-temperature power devices", Met. Mater. Trans. B, 41, 824 (2010). https://doi.org/10.1007/s11663-010-9365-5
  6. Y. Takaku, I. Ohnuma, Y. Yamada, Y. Yagi, Y. Nishibe, Y. Sutou, R. Kainuma, and K. Ishida, "Bi-base composite solders for mounting power semiconductor devices", J. Jap. Inst. Electron. Packga., 11, 141 (2008). https://doi.org/10.5104/jiep.11.141
  7. J. W. Yoon, J. H. Back, and S. B. Jung, "Effect of surface finish metallization on mechanical strength of Ag sintered joint", Microelectron. Eng., 198, 15 (2018). https://doi.org/10.1016/j.mee.2018.06.009
  8. B. S. Lee and J. W. Yoon, "Die-attach for power devices using the Ag sintering process: Interfacial microstructure and mechanical strength", Met. Mater. Int., 23, 958 (2017). https://doi.org/10.1007/s12540-017-6908-1
  9. S. C. Fu, M. Zhao, H. Shan, and W. Li, "Fabrication of largearea interconnects by sintering of micron Ag paste", Mater. Lett., 226, 26 (2018). https://doi.org/10.1016/j.matlet.2018.05.023
  10. T. Fan, H. Zhang, P. Shang, C. Li, C. Chen, J. Wang, Z. Liu, H. Zhang, and K. Suganuma, "Effect of electroplated Au layer on bonding performance of Ag pastes", J. Alloys. Compd., 731, 1280 (2018). https://doi.org/10.1016/j.jallcom.2017.09.279
  11. H. Shao, A. Wu, Y. Bao, Y. Zhao, G. Zou, and L. Liu, "Microstructure evolution and mechanical properties of Cu/Sn/Ag TLP-bonded joint during thermal aging", Mater. Charact., 144, 469 (2018). https://doi.org/10.1016/j.matchar.2018.07.041
  12. J. W. Yoon and B. S. Lee, "Sequential interfacial reactions of Au/In/Au transient liquid phase-bonded joints for power electronics applications", Thin. Solid. Films., 660, 618 (2018). https://doi.org/10.1016/j.tsf.2018.04.039
  13. G. O. Cook III and C. D. Sorensen, "Overview of transient liquid phase and partial transient liquid phase bonding", J. Mater. Sci., 46, 5305 (2011). https://doi.org/10.1007/s10853-011-5561-1
  14. J. F. Lynch, L. Feinstein, and R. A. Huggins, "Brazing by the. Diffusion Controlled Formation of a Liquid Intermediate. Phase", Weld. J., 38, 85 (1959).
  15. T. C. Illingworth, I. O. Golosnoy, V. Gergely, and T. W. Clyne, "Numerical modelling of transient liquid phase bonding and other diffusion controlled phase changes", J. Mat. Sci., 40, 2505 (2005). https://doi.org/10.1007/s10853-005-1983-y
  16. M. S. Park, S. L. Gibbons, and R. Arroyave, "Phase-field simulations of intermetallic compound growth in Cu/Sn/Cu sandwich structure under transient liquid phase bonding conditions", Acta Mater., 60, 6278, (2012). https://doi.org/10.1016/j.actamat.2012.07.063
  17. J. P. Jung and C. S. Kang, "Liquid metal formation on Ni/B/Ni diffusion bonded joint -Liquid phase diffusion bonding using B as an insert material-", J. Kor. Inst. Met. Mater., 33, 1302 (1995).
  18. J. P. Jung, C. D. Lee, and C. S. Kang, "A study on the melting induced diffusion bonding of 304 stainless steel", J. Kor. Inst. Met. Mater., 31, 323 (1993).
  19. A. S. Khaja, C. Kaestle, A. Reinhardt, and J. Franke, "Optimized thin-film diffusion soldering for power-electronics production", Proc. 36th International Spring Seminar on Electronics Technology, Alba Iulia, Romania, 11 (2013).
  20. B. Gollas, J. H. Albering, K. Schmut, V. Pointner, R. Herber, and J. Etzkorn, "Thin layer in situ XRD of electrodeposited Ag/Sn and Ag/In for low-temperature isothermal diffusion soldering", Intermetallics, 16, 962 (2008). https://doi.org/10.1016/j.intermet.2008.04.014
  21. N. Y. A. Shammas, "Present problems of power module packaging technology", Microelectron. Reliab., 43, 519 (2003). https://doi.org/10.1016/S0026-2714(03)00019-2
  22. C. Ehrhardt, M. Hutter, H. Oppermann, and K. D. Lang, "A lead free joining technology for high temperature interconnects using transient liquid phase soldering (TLPS)", Proc. 64th Electronic Components & Technology Conference (ECTC), Orlando, 1321, IEEE (2014).
  23. C. Honrao, T. C. Huang, M. Kobayashi, N. Smet, P. M. Raj, and R. Tummala, "Accelerated SLID bonding using thin multi-layer copper-solder stack for fine-pitch interconnections", Proc. 64th Electronic Components & Technology Conference (ECTC), Orlando, 1160, IEEE (2014).
  24. B. Liu, Y. Tian, J. Feng, and C. Wang, "Enhanced shear strength of Cu-Sn intermetallic interconnects with interlocking dendrites under fluxless electric current-assisted bonding process", J. Mater. Sci., 52, 1943 (2017). https://doi.org/10.1007/s10853-016-0483-6
  25. H. Y. Zhao, J. H. Liu, Z. L. Lim Y. X. Zhao, H. W. Niu, X. G. Song, and H. J. Dong, Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process", Mater. Lett., 186, 283 (2017). https://doi.org/10.1016/j.matlet.2016.10.017
  26. T. Hu, H. Chen, and M. Li, "Die attach materials with high remelting temperatures created by bonding Cu@Sn microparticles at lower temperatures", Mater. Des., 180, 383 (2016).
  27. H. Greve, L.Y. Chen, I. Fox, and F.P. McCluskey, "Transient liquid phase sintered attach for power electronics", Proc. 63rd Electronic Components & Technology Conference, Las Vegas, 435, IEEE (2013).
  28. S. W. Yoon, M. D. Glover, and K. Shiozaki, "Nickel-Tin transient liquid phase bonding toward high-temperature operational power electronics in electrified vehicles", IEEE. Trans. Power. Elcetron., 28, 2448 (2013). https://doi.org/10.1109/TPEL.2012.2212211
  29. H. Ji, M. Li, S. Ma, and M. Li, "Ni3Sn4-composed die bonded interface rapidly formed by ultrasonic-assisted soldering of Sn/Ni solder paste for high-temperature power device packaging", Mater. Des., 108, 590 (2016). https://doi.org/10.1016/j.matdes.2016.07.027
  30. N. S. Nobeen, T. Imade, B. H. Lee, E. J. R. Phua, C. C. Wong, and C. L. Gan, "Transient liquid phase (TLP) bonding using Sn/Ag multilayers for high temperature applications", Proc. 15th Electronics Packaging Technology Conference (EPTC), Singapore, 647, IEEE (2013).
  31. A. A. Bajwa and J. Wilde, "Reliability modeling of Sn-Ag transient liquid phase die-bonds for high-power SiC devices", Microelectron. Reliab., 60, 116 (2016). https://doi.org/10.1016/j.microrel.2016.02.016
  32. T. A. Tollefsen, A. Larsson, O. M Lovvik, and K. Aasmundtveti, "Au-Sn SLID bonding-properties and possibilities", Metallurgical and Materials Transactions B, 43B, 397 (2012).
  33. H. Shao, A. Wu, Y. Bao, Y. Zhao, and G. Zou, "Interfacial reaction and mechanical properties for Cu/Sn/Ag system low temperature transient liquid phase bonding", Mater. Electron., 27, 4839 (2016). https://doi.org/10.1007/s10854-016-4366-z
  34. O. Mokhtari and H. Nishikawa, "The shear strength of transient liquid phase bonded Sn-Bi solder joint with added Cu particles", Adv. Powder. Technol., 27, 1000 (2016). https://doi.org/10.1016/j.apt.2016.04.010
  35. X. Lu, S. He, and H. Nishikawa, "Thermally stable Cu3Sn/Cu composite joint for high-temperature power device", Scr. Mater., 110, 101 (2016). https://doi.org/10.1016/j.scriptamat.2015.08.011
  36. H. Ji, Y. Qiao, and M. Li, "Rapid formation of intermetallic joints through ultrasonic-assisted die bonding with Sn-0.7Cu solder for high temperature packaging application", Scripta. Materialia., 110, 19 (2016). https://doi.org/10.1016/j.scriptamat.2015.07.036
  37. T. L. Yang, T. Aoki, K. Matsumoto, K. Toriyama, A. Horibe, H. Mori, Y. Orii, J. Y. Wu, and C. R. Kao, "Full intermetallic joints for chip stacking by using thermal gradient bonding", Acta. Materialia., 113, 90 (2016). https://doi.org/10.1016/j.actamat.2016.04.046
  38. A. A. Shirzadi and E. R. Wallach, "Temperature gradient transient liquid phase diffusion bonding: a new method for joining advanced materials", Science and Technology of Welding and Joining, 2, 89 (1997) https://doi.org/10.1179/stw.1997.2.3.89
  39. D. H. Jung, M. H. Roh, J. H. Lee, K. H. Kim, and J. P. Jung, "Transient Liquid Phase (TLP) Bonding of Device for High Temperature Operation", J. Microelectron. Packag. Soc., 24(1), 17 (2017). https://doi.org/10.6117/kmeps.2017.24.1.017

피인용 문헌

  1. 파워모듈의 TLP 접합 및 와이어 본딩 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.007
  2. Ag/Sn/Ag 샌드위치 구조를 갖는 Backside Metallization을 이용한 고온 반도체 접합 기술 vol.27, pp.1, 2018, https://doi.org/10.6117/kmeps.2020.27.1.001
  3. 수소 플라즈마 처리를 이용한 구리-구리 저온 본딩 vol.28, pp.4, 2018, https://doi.org/10.6117/kmeps.2021.28.4.109