DOI QR코드

DOI QR Code

Comparison of Sea Surface Temperature from Oceanic Buoys and Satellite Microwave Measurements in the Western Coastal Region of Korean Peninsula

한반도 서해 연안 해역에서의 해양 부이 관측 수온과 위성 마이크로파 관측 해수면온도의 비교

  • Kim, Hee-Young (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education/Research Institute of Oceanography, Seoul National University)
  • 김희영 (서울대학교 과학교육과) ;
  • 박경애 (서울대학교 지구과학교육과/해양연구소)
  • Received : 2018.11.22
  • Accepted : 2018.12.24
  • Published : 2018.12.31

Abstract

In order to identify the characteristics of sea surface temperature (SST) differences between microwave SST from GCOM-W1/AMSR2 and in-situ measurements in the western coast of Korea, a total of 6,457 collocated matchup data were produced using the in-situ temperature measurements from marine buoy stations (Deokjeokdo, Chilbaldo, and Oeyeondo) from July 2012 to December 2017. The accuracy of satellite microwave SSTs was presented by comparing the ocean buoy data of Deokjeokdo, Chilbaldo, and Oeyeondo stations with the AMSR2 SST data more than five years. The SST differences between the microwave SST and the in-situ temperature measurements showed some dependence on environmental factors, such as wind speed and water temperature. The AMSR2 SSTs were tended to be higher than the in-situ temperature measurements during the daytime when the wind speed was low ($<6ms^{-1}$). On the other hand, they showed positive deviation increasingly as the wind speed increased for nighttime. In addition, increasing tendency of SST differences was related to decreasing sensitivity of microwave sensors at low temperatures and data contamination by land. A monthly analysis of the SST difference showed that unlike the previous trend, which was known to be the largest in winter when strong winds were blowing, the SST difference was largest in summer in Deokjeokdo and Chilbaldo buoy stations. This seemed to be induced by differential tidal mixing at the collocated matchup points. This study presented problems and limitations of the use of microwave SSTs with high contribution to the SST composites in the western coastal region off the Korean peninsula.

본 연구에서는 서해 연안에서의 실측-위성 해수면온도 차이를 규명하고 그 특성을 분석하기 위해 GCOM-W1/AMSR2 마이크로파 해수면온도 자료와 서해 연안에 위치한 덕적도, 칠발도, 외연도 해양기상 부이의 실측 수온 자료를 활용하여 2012년 7월부터 2017년 12월까지 총 6,457개의 일치점 자료를 생산하였다. 5년 이상의 덕적도, 칠발도, 외연도 해양 부이 수온 자료와 AMSR2 해수면온도를 비교하여 정확도를 제시하였다. 마이크로파 위성 해수면온도와 현장 관측 부이 해수면온도 간의 차이는 풍속과 수온 등 환경 요인에 대한 의존성을 가지는 것으로 나타났다. 낮시간 풍속이 약할 때 ($<6ms^{-1}$) AMSR2 해수면온도는 실측 해수면온도보다 높게 산출되며, 밤시간에 대해서는 풍속이 커질수록 양의 편차가 증가함을 밝혔다. 또한 AMSR2 해수면온도와 실측 해양부이 수온 간의 차이가 증가하는 경향은 낮은 온도에서 마이크로파 센서의 민감도의 저하와 육지에 의한 자료오염과 관련이 있는 것으로 나타났다. 실측-위성 해수면온도 차이를 월별로 도시해본 결과, 마이크로파 위성 해수면온도의 편차는 강한 바람이 부는 겨울철에 가장 커진다고 알려져 있던 기존의 경향성과는 달리 덕적도, 칠발도 부이에서는 여름철 가장 큰 해수면온도 편차값이 나타났다. 이러한 차이는 부이의 위치에 따른 조석 혼합의 공간적 차등에 기인한 것으로 사료된다. 본 연구는 인공위성 합성장에 기여도가 높은 마이크로파 위성 해수면온도를 사용할 때 한반도 서해안에서 발생할 수 있는 문제점과 제한점을 제시하였다.

Keywords

References

  1. Banzon, V. F., R. W. Reynolds, and T. M. Smith., 2010. The role of satellite data in extended reconstruction of sea surface temperatures. Paper read at Extended Abstracts, Oceans from Space Symp, Venice.
  2. Chelton, D. B. and F. J., Wentz, 2005. Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bulletin of the American Meteorological Society, 86(8), 1097-1115. https://doi.org/10.1175/BAMS-86-8-1097
  3. Dai, A., 2016. Future warming patterns linked to today's climate variability. Scientific Reports 6, 19110. https://doi.org/10.1038/srep19110
  4. Dong, S., S. T. Gille, J. Sprintall, and C. Gentemann, 2006. Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. Journal of Geophysical Research: Oceans, 111(C4).
  5. Donlon, C. J., L., Nykjaer, and C., Gentemann, 2004. Using sea surface temperature measurements from microwave and infrared satellite measurements. International Journal of Remote Sensing, 25(7-8), 1331-1336. https://doi.org/10.1080/01431160310001592256
  6. Donlon, C., N. Rayner, I. Robinson, D. J. S. Poulter, K. S. Casey, J. Vazquez-Cuervo, E. Armstrong, A. Bingham, O. Arino, and C. Gentemann., 2007. The Global ocean data assimilation experiment high-resolution sea surface temperature pilot project. Bulletin of the American Meteorological Society 88(8), 1197-1213. doi:10.1175/BAMS-88-8-1197.
  7. Emery, W. J., Y. Yu, G. A. Wick, P. Schluessel, and R. W. Reynolds, 1994. Correcting infrared satellite estimates of sea surface temperature for atmospheric water vapor attenuation. J. Geophys. Res., 99, 5219-5236. https://doi.org/10.1029/93JC03215
  8. Gentemann, C. L., and F. J. Wentz, 2001. Satellite microwave SST: Accuracy, comparisons to AVHRR and Reynolds SST, and measurement of diurnal thermocline variability. Proc. of 2001 Geoscience and Remote Sensing Symposium, Sydney, Jul. 9-Jul. 13, vol. 1, pp. 246-248.
  9. Gentemann, C. L., and F. J. Wentz, C. A. Mears, and D. K. Smith, 2004. In situ validation of tropical rainfall measuring mission microwave sea surface temperatures. Journal of Geophysical Research: Oceans, 109(C4).
  10. Gentemann, C. L., T. Meissner, and F. J. Wentz, 2010. Accuracy of satellite sea surface temperature at 7 and 11 GHz. IEEE Transactions on Geoscience and Remote Sensing, 48(3), 1009-1018. https://doi.org/10.1109/TGRS.2009.2030322
  11. Gentemann, C. L., 2014. Three way validation of MODIS and AMSR-E sea surface temperatures. Journal of Geophysical Research: Oceans, 119, 2583-2598. https://doi.org/10.1002/2013JC009716
  12. Gentemann, C. L., and K. A. Hilburn, 2015. In situ validation of sea surface temepratures from the GCOMW1/AMSR2 RSS calibrated brightness temperatures. Journal of Geophysical Research: Oceans, 120(5), 3567-3585. https://doi.org/10.1002/2014JC010574
  13. Harris, A. R., and M. A. Saunders, 1996. Global validation of the alongtrack scanning radiometer against drifting buoys. Journal of Geophysical Research: Oceans, 101(C5), 12127-12140. https://doi.org/10.1029/96JC00317
  14. Hihara, T., M. Kubota, and A. Okuro, 2015. Evaluation of sea surface temperature and wind speed observed by GCOM-W1/AMSR2 using in situ data and global products. Remote Sensing of Environment, 164, 170-178. https://doi.org/10.1016/j.rse.2015.04.005
  15. Hosoda, K., 2010. A review of satellite-based microwave observations of sea surface temperatures. Journal of Oceanography, 66(4), 439-473. https://doi.org/10.1007/s10872-010-0039-3
  16. Kim, H. Y., K. A. Park, S. R. Chung, S. K. Baek, B. I. Lee, I. C. Shin, C. Y. Chung, J. G. Kim, and W. C. Jung, 2018. Validation of Sea Surface Temperature (SST) from satellite passive microwave sensor (GPM/ GMI) and causes of SST errors in the Northwest Pacific. Korean Journal of Remote Sensing, 34(1), 1-15. https://doi.org/10.7780/KJRS.2018.34.1.1
  17. Kwon, K. M., B. J. Choi, S. H. Lee, Y. K. Cho, and C. Jang, 2011. Coastal current along the eastern boundary of the Yellow Sea in summer: Numerical simulations. Sea, 16(4), 155-168. https://doi.org/10.7850/jkso.2011.16.4.155
  18. Lie, H. J., I. K. Bang, Y. Q. Kang, 1986. Empirical orthogonal function analysis of seawater temperature in the southeastern Hwanghae. Journal of the Oceanological Society of Korea, 21(4), 193-202.
  19. Lie, H. J., 1989. Tidal fronts in the southern Hwanghae (Yellow Sea). Cont. Shelf Res., 9, 527-546. https://doi.org/10.1016/0278-4343(89)90019-8
  20. Lee, S. H., and R. C. Beardsley, 1999. Influence of stratification on residual tidal currents in the Yellow Sea. Journal of Geophysical Research, 104, 15679-15701. https://doi.org/10.1029/1999JC900108
  21. Lee, S. H., and H. Y. Choi, 1997. A numerical model study of residual tidal currents in the mid-eastern Yellow Sea-initial stratification. The Yellow Sea, 3, 58-70.
  22. Maturi, E., A., Harris, J., Mittaz, J., Sapper, G., Wick, X., Zhu, and P., Koner, 2017. A New High-Resolution Sea Surface Temperature Blended Analysis. Bulletin of the American Meteorological Society, 98(5), 1015-1026. https://doi.org/10.1175/BAMS-D-15-00002.1
  23. McClain, E. P., 1989. Global sea surface temperatures and cloud clearing for aerosol optical depth estimates. Int. J. Remote Sens., 10, 763-769. https://doi.org/10.1080/01431168908903917
  24. Meissner, T., F. J., Wentz, and D., Draper, 2012. GMI calibration algorithm and analysis theoretical basis document. Remote Sensing Systems.
  25. Meissner, T., and F. J. Wentz, 2012. The emissivity of the ocean surface between 6 and 90 GHz over a large range of wind speeds and earth incidence angles. IEEE Trans. Geosci. Remote Sens., 50(8), 3004-3026. https://doi.org/10.1109/TGRS.2011.2179662
  26. O'Carroll, A. G., J. G. Watts, L. A. Horrocks, R. W. Saunders, and N. A. Rayner, 2006. Validation of the AATSR meteo product sea surface temperature. Journal of Atmospheric and Oceanic Technology, 23(5), 711-726. https://doi.org/10.1175/JTECH1876.1
  27. Park, K. A., E. Y., Lee, X., Li, S. R., Chung, E. H., Sohn, and S., Hong, 2015. NOAA/AVHRR sea surface temperature accuracy in the East/Japan Sea. International Journal of Digital Earth, 8(10), 784-804. https://doi.org/10.1080/17538947.2014.937363
  28. Ren, S., J. Xie, and J. Zhu, 2014. The roles of different mechanisms related to the tide-induced fronts in the Yellow Sea in summer. Advances in Atmospheric Sciences, 31(5), 1079-1089. https://doi.org/10.1007/s00376-014-3236-y
  29. Ricciardulli, L., and F. J. Wentz, 2004. Uncertainties in sea surface temperature retrievals from space: Comparison of microwave and infrared observations from TRMM. Journal of Geophysical Research: Oceans, 109(C12).
  30. Simpson, J. H., and J. R. Hunter, 1974. Fronts in the Irish Sea. Nature, 250, 404-406. https://doi.org/10.1038/250404a0
  31. Stammer, D., F. Wentz, and C. Gentemann, 2003. Validation of microwave sea surface temperature measurements for climate purposes. Journal of Climate, 16(1), 73-87. https://doi.org/10.1175/1520-0442(2003)016<0073:VOMSST>2.0.CO;2
  32. Stogryn, A., 1967. The apparent temperature of the sea at microwave frequencies. IEEE Transactions on Antennas and Propagation, 15(2), 278-286. https://doi.org/10.1109/TAP.1967.1138900
  33. Walton, C. C., 2016. A review of differential absorption algorithms utilized at NOAA for measuring sea surface temperature with satellite radiometers. Remote Sensing of Environment, 187, 434-446. doi:10.1016/j.rse.2016.10.011.
  34. Wentz, F. J., 1983. A model function for ocean microwave brightness temperature. Journal of Geophysical Research: Oceans, 88(C3), 1892-1908. https://doi.org/10.1029/JC088iC03p01892
  35. Wentz, F. J., 1997. A well-calibrated ocean algorithm for special sensor microwave/imager. Journal of Geophysical Research: Oceans, 102(C4), 8703-8718. https://doi.org/10.1029/96JC01751
  36. Wentz, F. J., C., Gentemann, D., Smith, and D., Chelton, 2000. Satellite measurements of sea surface temperature through clouds. Science, 288(5467), 847-850. https://doi.org/10.1126/science.288.5467.847
  37. Wentz, F. J., and T. Meissner, 2000. Algorithm theoretical basis document (ATBD) version 2 AMSR ocean algorithm. Remote Sensing Systems, Santa Rosa, CA, USA.
  38. Wentz, F.J., and T. Meissner, 2007. Supplement 1 Algorithm Theoretical Basis Document for AMSR-E ocena algorithm. Santa Rosa, CA, USA, Remote Sensing Systems.
  39. Yan, Y., A. Barth, J.-M. Beckers, G. Candille, J.-M. Brankart, and P. Brasseur., 2015. Ensemble assimilation of ARGO temperature profile, sea surface temperature, and altimetric satellite data into an eddy permitting primitive equation model of the North Atlantic Ocean. Journal of Geophysical Research: Oceans, 120(7), 5134-5157. https://doi.org/10.1002/2014JC010349
  40. Yoshimori, K., K. Itoh, and Y. Ichioka, 1994. Thermal radiative and reflective characteristics of a windroughened water surface. JOSAA, 11(6), 1886-1893. https://doi.org/10.1364/JOSAA.11.001886