DOI QR코드

DOI QR Code

A Facile Method for the Synthesis of Freestanding CuO Nanoleaf and Nanowire Films

  • Zhao, Wei (Electronic Convergence Materials Division, Nano Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET)) ;
  • Jung, Hyunsung (Electronic Convergence Materials Division, Nano Convergence Materials Center, Korea Institute of Ceramic Engineering & Technology (KICET))
  • Received : 2018.09.18
  • Accepted : 2018.11.07
  • Published : 2018.12.31

Abstract

A facile method to fabricate freestanding CuO nanoleaves and CuO nanowires-based films was demonstrated. $Cu(OH)_2$ nanoleaves and nanowires were prepared by a hydrolysis reaction in aqueous solution including pyridine and NaOH with the tailored concentrations at room temperature. The films of freestanding CuO nanoleaves and CuO nanowires can be successfully obtained via the simple vacuum infiltration following a thermal dehydration reaction. The morphologies and crystallinity of the $Cu(OH)_2$ nanoleaves/nanowires and CuO nanoleaves/nanowires were characterized by XRD, SEM, TEM and FT-IR. The films fabricated with freestanding CuO nanoleaves and nanowires in this study may be applicable for building high-efficiency organic binder-free devices, such as gas sensors, batteries, photoelectrodes for water splitting and so on.

Keywords

PMGHBJ_2018_v51n6_360_f0001.png 이미지

Fig. 1 FT-IR spectra of (a) pyridine, (b) Cu(OH)2, and (c) CuO.

PMGHBJ_2018_v51n6_360_f0002.png 이미지

Fig. 2 XRD patterns of the synthesized pristine Cu(OH)2 and CuO after calcination based on the standard XRD JCPDS 13-0420 and 48-1548 for Cu(OH)2 and CuO, respectively.

PMGHBJ_2018_v51n6_360_f0003.png 이미지

Fig. 3 SEM images of (a) pristine Cu(OH)2 NL film after vacuum infiltration, (b) (c) CuO NL film after calcination, (d) pristine Cu(OH)2 NW film after vacuum infiltration, (e) (f) CuO NW film after calcination.

PMGHBJ_2018_v51n6_360_f0004.png 이미지

Fig. 4 TEM images of CuO nanoleaves: (a) Low magnification, (b) high magnification, (inset of (a) is the selected area electron diffraction (SAED) pattern), and CuO nanowires: (c) Low magnification, (d) high magnification. (The scale bars are: (a)100 nm, (b) 2 nm, (c) 100 nm, and (d) 2 nm)

PMGHBJ_2018_v51n6_360_f0005.png 이미지

Fig. 5 The digital photo of pristine Cu(OH)2 film after vacuum infiltration (left) and CuO film after calcination (right).

References

  1. J. Lee, M. C. Orilall, S. C. Warren, M. Kamperman, F. J. DiSalvo, and U. Wiesner, Nat. Mater., 2008, 7, 222-228. https://doi.org/10.1038/nmat2111
  2. V. V. Sysoev, B. K. Button, K. Wepsiec, S. Dmitriev, A. Kolmakov, Nano Lett., 2006, 6, 1584-1588. https://doi.org/10.1021/nl060185t
  3. M. J. Lee, S. Han, S. H. Jeon, B. H. Park, B. S. Kang, S. E. Ahn, K. H. Kim, C. B. Lee, C. J. Kim, I. K. Yoo, D. H. Seo, X. S. Li, J. B. Park, J. H. Lee, Y. Park, Nano Lett., 2009, 9, 1476-1481. https://doi.org/10.1021/nl803387q
  4. A. Dev, J. P. Richters, J. Sartor, H. Kalt, J. Gutowski, T. Voss, Appl. Phys. Lett. 2011, 98, 131111. https://doi.org/10.1063/1.3569951
  5. A. P Alivisatos, Science, 1996, 271, 933-937. https://doi.org/10.1126/science.271.5251.933
  6. F. W. Wise, Acc. Chem. Res., 2000, 33, 773-780. https://doi.org/10.1021/ar970220q
  7. I. D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, Nano Lett. 2006, 6, 2009-2013. https://doi.org/10.1021/nl061197h
  8. Z. L. Wang, J. Song, Science, 2006, 312, 242-246. https://doi.org/10.1126/science.1124005
  9. H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, C. A. Grimes, J. Phys. Chem. C, 2007, 111, 7235-7241. https://doi.org/10.1021/jp070273h
  10. X. D. Wang, C J. Summers, Z. L. Wang, Nano Lett., 2004, 4, 423-426. https://doi.org/10.1021/nl035102c
  11. W. Wang, B. Zeng, J .Yang, B. Poudel, J. Huang, M. J. Naughton, Z. Ren, Adv. Mater., 2006, 18, 3275-3278. https://doi.org/10.1002/adma.200601274
  12. Y. L. Wang, X. C. Jiang, Y. N. Xia, J. Am. Chem. Soc., 2003, 125, 16176-16177. https://doi.org/10.1021/ja037743f
  13. K. Zhu, T. B. Vinzant, N. R. Neale, A. J. Frank, Nano Lett., 2007, 7, 3739-3746. https://doi.org/10.1021/nl072145a
  14. Y. B. He, G. R. Li, Z. L. Wang, C. Y. Su, Y. X. Tong, Energy Environ. Scci., 2011, 4, 1288-1292. https://doi.org/10.1039/c0ee00669f
  15. C. N. R. Rao, S. R. C. Vivekchand, K. Biswasa, A. Govindaraj, Dalton Trans., 2007, 3728-3749.
  16. S. J. Limmer, G. Cao, Adv. Mater., 2003, 15, 427-431. https://doi.org/10.1002/adma.200390099
  17. J. Z. Su, X. J. Feng, J. D. Sloppy, L. J. Guo, C. A. Grimes, Nano Lett., 2011, 11, 203-208. https://doi.org/10.1021/nl1034573
  18. X. Zhao, P. Wang, Z. Yan, and N. Ren, Chemical Physics Letters, 2014, 609, 59-64. https://doi.org/10.1016/j.cplett.2014.06.045
  19. K. Zhou, R. Wang, B. Xu, and Y. Li, Nanotechnology, 2006, 17, 3939-3943. https://doi.org/10.1088/0957-4484/17/15/055
  20. R. P. Wijesundera, Semicond. Sci. Technol., 2010, 25, 045015. https://doi.org/10.1088/0268-1242/25/4/045015
  21. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, Chem. Mater., 2006, 18, 867-871. https://doi.org/10.1021/cm052256f
  22. X. Guo, P. Diao, D. Xu, S. Huang, Y. Yang, T. Jin, Q. Wu, M. Xiang, and M. Zhang, Int. J. of Hydrogen Energy, 2014, 39, 7686-7696. https://doi.org/10.1016/j.ijhydene.2014.03.084
  23. F. P. Koffyberg and F. A. Benko, J. Appl. Phys., 1982, 53, 1173-1177. https://doi.org/10.1063/1.330567
  24. W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. H. Baeck, and E. W. McFarland, Sol. Energy Mater. Sol. Cells 2003, 77, 229-237. https://doi.org/10.1016/S0927-0248(02)00343-4
  25. A. Kargar, Y. Jing, S. J. Kim, C. T. Riley, X. Pan, and D. Wang, ACS Nano 2013, 7, 11112-11120. https://doi.org/10.1021/nn404838n
  26. D. L. Leussing, and R. C. Hansen, J. Am. Chem. Soc., 1957, 79, 4270-4273. https://doi.org/10.1021/ja01573a008
  27. M. Katcka, and T. Urbanski, Bulletin De L'Academie Polonaise Des Sciences, Serie des sciences chlmiques, 1964, Volume XII, 9, 615-621.