Fig. 1. Effect of MF on cell viability in RAW 264.7 macrophage cells incubated for 24 hrs. Results are the mean ± SD of three independent experiments.
Fig. 2. Effect of MF on the nitric oxide production in RAW 264.7 macrophage cells were incubated for 24 hrs. treated with LPS; 1 ㎍ /mL. Results are the mean ± SD of three independent experiments.
Fig. 3. Effect of MF on the IL-1α production in RAW 264.7 macrophage cells were incubated for 24 hrs. treated with LPS; 1 ㎍/mL. Results are the mean ± SD of three independent experiments.
Fig. 4. Effect of MF on the IL-6 production in RAW 264.7 macrophage cells were incubated for 24 hrs. treated with LPS; 1 ㎍/mL. Results are the mean ± SD of three independent experiments.
Fig. 5. Effect of MF on the IL-10 production in RAW 264.7 macrophage cells were incubated for 24 hrs. treated with LPS; 1 ㎍/mL. Results are the mean ± SD of three independent experiments.
Table 1. Effect of MF on IL-6 Production in Raw 264.7 Cells Treated with LPS
Table 2. Effect of MF on IL-10 Production in Raw 264.7 Cells Treated with LPS
References
- I. R. Kim et al. Boncho-Hak. Seoul : Young-Lim Press.
- Korea Food and Drug Administration. The Korean Herbal Pharmacopoeia. Seoul : Korea Food and Drug Administration.
- S. Y. Ji et al. (2017). Ethanol Extracts of Mori Folium Inhibit Adipogenesis Through Activation of AMPK Signaling Pathway in 3T3-L1 Preadipocytes. Journal of Life Science, 27(2), 155-163. https://doi.org/10.5352/JLS.2017.27.2.155
- Y. S. Lee et al. (2018). Ethanol Extract of Mori Folium Inhibits AICAR-induced Muscle Atrophy Through Inactivation of AMPK in C2C12 Myotubes. Journal of Life Science, 28(4), 435-443. https://doi.org/10.5352/JLS.2018.28.4.435
- S. H. Byun, S. M. Park, S. C. Kim & I. J. Cho. (2013). Anti-fibrotic Effect of Mori Folium Extract in Hepatic Stellate Cells. Kor. J. Herbology, 28(4), 49-55. https://doi.org/10.6116/kjh.2013.28.4.49
- T. O. Kwon et al. (2015). Anti-Diabetic Effects of Mori Folium Extract on High-Fat Diet and Streptozotocin-Induced Type II Diabetes Mellitus in Mice. Kor. J. Herbolog, 30(1), 1-9. https://doi.org/10.6116/KJH.2015.30.1.1.
- J. E. Lee, Y. K. Song & H. H. Lim. (2007). Studies on the Antioxidant Effects of Mori Folium Extract. The Journal of Korean Medicine, 28(1), 148-158.
- A. R. Lee et al. (2017). Anti-skin-aging Effect of Mori Folium through decreased Advanced glycation end product (AGEs). Kor. J. Herbolog, 32(5), 7-12. https://doi.org/10.6116/KJH.2017.32.5.7
- S. Y. Kim et al. (2016). Myeonyeoh-Hak. Seoul : Life Science Publishing Co.
- S. S. No. (2006). Wonsaek Pibugaw-Hak. Seoul : IBC Gihoek Press.
- J. B. Calixto, M. M. Campos, M. F. Otuki & A. R. Santos. (2004). Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion melecules. Planta Med, 70(2), 93-103. https://doi.org/10.1055/s-2004-815483
- Y. B Lee et al. (2013). The Effect of Mulberry Leaf Extract on Blood biochemical parameters in White Rats Exposed to 2,3,7,8-tetrachlorodibenzo-pdioxin(TCDD). Journal of Digital Convergence, 11(1), 299-308. https://doi.org/10.14400/JDPM.2013.11.1.299
- J. Kim. (2014). Antibacter ial and anti-inflammatory effects of Platycodon grandiflorum extracts. Journal of Digital Convergence, 12(3), 359-366. https://doi.org/10.14400/JDC.2014.12.3.359
- A. Y Jang, Y. C. Sueng & J. G. Ji. (2016). The comparative study on physiological activity of White ginseng, Red ginseng and Black ginseng extract. Journal of Digital Convergence, 14(5), 459-471. https://doi.org/10.14400/JDC.2016.14.5.459
- M. S. Kim, S, H. Park & H. R. Park. (2016). Convergence Studies Vascular Relaxation and Safty Evaluation in Viscum Coloratumma, Chrysantheum Morifolium, Citri Percarpium, and Ophiopoginis Radix Mixture. Journal of Digital Convergence, 14(9), 479-484. https://doi.org/10.14400/JDC.2016.14.9.479
- S. H. Park, B. J. Park & H. R. Park. (2016). Studies on Nutritional Analysis and Antioxidant activity of Oriental Medicines with Bloodstream Improvement. Journal of Digital Convergence, 14(10), 563-570. https://doi.org/10.14400/JDC.2016.14.10.563
- J. N. Sharma, A. Al-Omran & S. S. Parvathy. (2007). Role of nitric oxide in inflammatory diseases. Inflammopharmacol, 15(6), 252-259. https://doi.org/10.1007/s10787-007-0013-x
- R. Korhonen, A. Lahti, H. Kankaanranta & E. Moilanen (2005). Nitric oxide production and signaling in inflammation. Curr Drug Targets Inflamm Allergy, 4(4), 471-479. https://doi.org/10.2174/1568010054526359
- S. M. Opa & V. A, Depalo. (2000). Anti-inflammatory cytokines. Chest, 117(4), 1162-1172. https://doi.org/10.1378/chest.117.4.1162
-
I Nazarenko, R. Marhaba, E. Reich, E. Voronov & M Vitacolonna. (2008). Tumorirenicity of IL-
$1{\alpha}$ and IL-$1{\beta}$ deficient fibrosarcoma cells. Neoplasia, 10(6), 549-562. https://doi.org/10.1593/neo.08286 - T. Toshio, N. Masashi & K. Tadamitsu. (2014). IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb Perspect Biol, 6(10), a016295. https://doi.org/10.1101/cshperspect.a016295
- S. S. Iyer & G. H. Cheng. (2012). Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit Rev Immunol, 32(1), 23-63. https://doi.org/10.1615/CritRevImmunol.v32.i1.30