DOI QR코드

DOI QR Code

Deriving rules for identifying diabetic among individuals with metabolic syndrome

대사증후군 환자 가운데 당뇨환자를 찾기 위한 규칙 도출

  • Received : 2018.08.16
  • Accepted : 2018.11.20
  • Published : 2018.11.28

Abstract

The objective of this study is to derive specific classification rules that could be used to prevent individuals with Metabolic Syndrome (MS) from developing diabetes. Specifically, we aim to identify rules which classify individuals with MS into those without diabetes (class 0) and those with diabetes (class 1). In this study we collected data from Korean National Health and Nutrition Examination Survey and built a decision tree after data pre-processing. The decision tree brings about five useful rules and their average classification accuracy is quite high (75.8%). In addition, the decision tree showed that high blood pressure and waist circumference are the most influential factors on the classification of the two groups. Our research results will serve as good guidelines for clinicians to provide better treatment for patients with MS, such that they do not develop diabetes.

본 연구의 목적은 대사증후군이 당뇨병으로 확대되는 것을 방지하는데 이용할 수 있는 구체적인 분류 규칙을 도출하는 것이다. 좀 더 구체적으로 말하면, 대사증후군을 앓고 있는 사람들을 당뇨병이 없는 사람 (class 0)과 당뇨병이 있는 사람(class 1)으로 구별해 내는 분류하는 규칙을 찾는 것이다. 본 연구는 국민건강영양조사 데이터를 수집하여 데이터 전처리 과정들을 거친 후 의사결정나무를 구축하였다. 생성된 의사결정나무로부터 유용한 5개의 분류 규칙을 도출하였는데, 이들의 평균 분류 정확도는 75.8%이었다. 또한, 생성된 의사결정나무로부터 고혈압 여부와 허리둘레가 class 0 그룹과 class 1 그룹으로 분류하는데 있어서 중요한 요인임을 알 수 있었다. 이번 연구 결과는 의사들이 향후 대사증후군 환자가 당뇨환자가 되지 않도록 치료하는데 좋은 지침이 될 것으로 기대된다.

Keywords

DJTJBT_2018_v16n11_363_f0001.png 이미지

Fig. 1. The decision tree built from the training dataset. The bar at the bottom of the figure indicates the proportion of each class in the leaf node.

Table 1. Details of the features remained after pre-processing.

DJTJBT_2018_v16n11_363_t0001.png 이미지

Table 2. The classification results of the decision tree

DJTJBT_2018_v16n11_363_t0002.png 이미지

Table 3. 14 rules generated from the decision tree.

DJTJBT_2018_v16n11_363_t0003.png 이미지

Table 4. Comparison of the four algorithms

DJTJBT_2018_v16n11_363_t0004.png 이미지

References

  1. S. M. Grundy, H. B. Brewer, J. I. Cleeman, S. C. Smith & C. Lenfant. (2004). Definition of metabolic syndrome. Circulation, 109(3), 433-438. DOI : 10.1161/01.CIR.0000111245.75752.C6
  2. J. Chen et al. (2004). The metabolic syndrome and chronic kidney disease in us adults. Annals of Internal Medicine, 140(3), 167-174. DOI : 10.7326/0003-4819-140-3-200402030-00007
  3. M. Hamaguchi et al. (2005). The metabolic syndrome as a predictor of nonalcoholic fatty liver disease. Annals of Internal Medicine, 143(10), 722-728. DOI : 10.7326/0003-4819-143-10-200511150-00009
  4. N. Sattar et al. (2003). Metabolic syndrome with and without c-reactive protein as a predictor of coronary heart disease and diabetes in the west of scotland coronary prevention study. Circulation, 108(4), 414-419. DOI : 10.1016/j.accreview.2003.09.016
  5. K. G. M. Alberti, P. Zimmet & J. Shaw. (2005). The metabolic syndrome-a new worldwide definition. The Lancet, 366(9491), 1059-1062. DOI : 10.1016/S0140-6736(05)67402-8
  6. S. M. Haffner, S. Lehto, T. Ronnemaa, K. Pyorala & M. Laakso. (1998). Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. New England Journal of Medicine, 339(4), 229-234. DOI : 10.1056/NEJM199807233390404
  7. R. Klein. (1995). Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care, 18(2), 258-268. DOI : 10.2337/diacare.18.2.258
  8. S. Lehto, T. Rönnemaa, K. Pyorala & M. Laakso. (1996). Predictors of stroke in middle-aged patients with non- insulin-dependent diabetes. Stroke, 27(1), 63-68. DOI : 10.1161/01.STR.27.1.63
  9. D. R. Whiting, L. Guariguata, C. Weil & J. Shaw. (2011). Idf diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94(3), 311-321. DOI : 10.1016/j.diabres.2011.10.029
  10. N. Sattar et al. (2008). Can metabolic syndrome usefully predict cardiovascular disease and diabetes? outcome data from two prospective studies. The Lancet, 371(9628), 1927-1935. DOI :10.1016/S0140-6736(08)60602-9
  11. D. D. Waters et al. (2011). Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. Journal of the American College of Cardiology, 57(14), 1535-1545.  DOI : 10.1016/j.jacc.2010.10.047
  12. K. Kurotani et al. (2017). Metabolic syndrome components and diabetes incidence according to the presence or absence of impaired fasting glucose: the japan epidemiology collaboration on occupational health study. Journal of Epidemiology, 27(9), 408-412. DOI : 10.1016/j.je.2016.08.015
  13. M. P. Stern, K. Williams, C. González-Villalpando, K. J. Hunt & S. M. Haffner. (2004). Does the metabolic syndrome improve identification of individuals at risk of type 2 diabetes and/or cardiovascular disease? Diabetes Care, 27(11), 2676-2681. DOI : 10.2337/diacare.27.11.2676
  14. H. K. Kim, K. H. Choi, S. W. Lim & H. S. Rhee. (2016). Development of prediction model for prevalence of metabolic syndrome using data mining : korea national health and nutrition examination study. Journal of Digital Convergence, 14(2), 325-332. DOI : 10.14400/JDC.2016.14.2.325
  15. J. M. Park, J. Y. Lee, J. J. Dong, D. C. Lee & Y. J. Lee. (2016). Association between the triglyceride to high-density lipoprotein cholesterol ratio and insulin resistance in korean adolescents: a nationwide population-based study. Journal of Pediatric Endocrinology and Metabolism, 29(11), 1259-1265. DOI :10.1515/jpem-2016-0244
  16. J. Y. Oh & S. H. Choi. (2018). An analysis of the characteristics of companies introducing smart factory system using data mining technique. Journal of the Korea Convergence Society, 9(5), 179-189. DOI :10.15207/JKCS.2018.9.5.179
  17. J. C. Kim, H. I. Jung, H. Yoo & K. Y. Chung. (2018). Sequence mining based manufacturing process using decision model in cognitive factory. Journal of the Korea Convergence Society, 9(3), 53-59. DOI :10.15207/JKCS.2018.9.3.05
  18. J. H. Ku. (2017). A study of the machine learning model for product faulty prediction in internet of things environment. Journal of Convergence for Information Technology, 7(1), 55-60. DOI :10.22156/CS4SMB.2017.7.1.055
  19. D. Lavanya & K. U. Rani. (2011). Performance evaluation of decision tree classifiers on medical datasets. International Journal of Computer Applications, 26(4), 1-4. https://doi.org/10.5120/3095-4247
  20. N. Lavrac. (1999). Selected Techniques for data mining in medicine. Artificial Intelligence in Medicine, 16(1), 3-23. DOI : 10.1016/S0933-3657(98)00062-1
  21. T. H. Kim et al. (2009). Prevalence of the metabolic syndrome in type 2 diabetic patients. Korean Diabetes Journal, 33(1), 40-47. DOI : 10.4093/kdj.2009.33.1.40
  22. Z. Lee et al. (1999). Plasma insulin, growth hormone, cortisol, and central obesity among young chinese type 2 diabetic patients. Diabetes Care, 22(9), 1450-1457. DOI : 10.2337/diacare.22.9.1450
  23. T. Siddiquee et al. (2015). Association of general and central obesity with diabetes and prediabetes in rural bangladeshi population. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 9(4), 247-251. DOI : 10.1016/j.dsx.2015.02.002
  24. G. M. Rao, L. O. Morghom, M. N. Kabur, B. M. B. Mohmud & K. Ashibani. (1989). Serum glutamic oxaloacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT) levels in diabetes mellitus. Indian Journal of Medical Sciences, 43(5), 118-121.