DOI QR코드

DOI QR Code

Optical Properties of Soluble Polythiophene for Flexible Solar Cell

  • Kim, Byoung-Ju (Department of New and Renewable Energy, Kyungil University) ;
  • Park, Eun-Hye (Department of New and Renewable Energy, Kyungil University) ;
  • Kang, Kwang-Sun (Department of New and Renewable Energy, Kyungil University)
  • Received : 2018.06.08
  • Accepted : 2018.12.19
  • Published : 2018.12.31

Abstract

Polythiophene-$TiO_2$ composite was synthesized with different molar ratios of thiophene and titaniumisopropoxide ($Ti(OPr)_4$) for flexible solar cell application as a flexible electrode or an active material. The $Ti(OPr)_4$ was stabilized by thiophene. The thiophene was polymerized by ferric chloride catalyst. The synthesized polythiophene exhibited strong UV-visible absorption in the range of the wavelength shorter than 500 nm. Field emission scanning electron microscope (FESEM) image of low concentration of $TiO_2$ film showed smooth surface. However, FESEM image of high concentration of $TiO_2$ film exhibited relatively rough surface. Polythiophene concentration dependent strong photoluminescence quenching of surfrhodamine-B was observed.

Keywords

TOGBCQ_2018_v6n4_91_f0001.png 이미지

Fig. 1. Schematic representation of the synthetic process and possible chemical structures

TOGBCQ_2018_v6n4_91_f0002.png 이미지

Fig. 2. FESEM images of PThTiO2 synthesized with (a) 0.3 g of Ti(OPr)4 and (b) 0.5 g of Ti(OPr)4

TOGBCQ_2018_v6n4_91_f0003.png 이미지

Fig. 3. UV-visible absorption spectra with various amount of PThTiO2 solution.

TOGBCQ_2018_v6n4_91_f0004.png 이미지

Fig. 4. PL quenching spectra of PThTiO2 with excitation wavelength of (a) 480 nm and (b) 500 nm

References

  1. D. Beydoun, R. Amal, "Implications of heat treatment on the properties of a magnetic iron oxide-titanium dioxide photocatalyst," Mater. Sci. Eng. B., Vol. 94, pp. 71-81, 2002. https://doi.org/10.1016/S0921-5107(02)00085-5
  2. Z. Hiroaki, H. Hayamizu, T. Yoshida, Y. Muraoka, Y. Okamoto, J. Yamaura, Y. Ueda, "Spinodal decomposition in the $TiO_2-VO_2$ system," Chem. Mater, Vol. 25, pp. 2202-2210, 2013. https://doi.org/10.1021/cm400236p
  3. M. Nasr, A.A. Chaaya, N. Abboud, M. Bechelany, R. Viter, C. Eid, A. Khoury, P. Miele, "Photoluminescence: A very sensitive tool to detect the presence of anatase in rutile phase electrospun $TiO_2$ nanofibers," Superlattices and Microstructures, Vol. 77, pp. 18-24, 2015. https://doi.org/10.1016/j.spmi.2014.10.034
  4. J. Zheng, S. Bao, P. Jin, "$TiO_2(R)/VO_2(M)/TiO_2(A)$ multilayer film as smart window: Combination of energy-saving, antifogging and self-cleaning functions," Nano Energy, Vol. 11, pp. 136-145, 2015. https://doi.org/10.1016/j.nanoen.2014.09.023
  5. Y. Yu, K. Fan, T. Duan, X. Chen, R. Li, T. Peng, "Efficient panchromatic light harvesting with co-sensitization of zinc phthalocyanine and bithiophene-based organic dye-senssitized solar cells," ACS Sustainable Chem. Eng., Vol. 2, pp. 718-725, 2014. https://doi.org/10.1021/sc400532g
  6. C. Sarantopoulos, E. Puzenat, C. Guillard, J.M. Hermann, A.N. Gleizes, F. Maury, "Microfibrous $TiO_2$ supported photocatalysts prepared by metal-organic chemical vapor infiltration for indoor air and waste water purification," Applied Catalysis B: Environmental, Vol. 91, pp. 225-233, 2009. https://doi.org/10.1016/j.apcatb.2009.05.029
  7. D. Gebeyehu, C.J. Brabec, N.S. Sariciftci, D. Vangeneugden, R. Kiebooms, D. Vanderzande, F. Kienberger, H. Schindler, "Hybrid solar cells based on dye-sensitized nanoporous $TiO_2$ electrodes and conjugated polymers as hole transport materials," Synthetic Metals, Vol. 125, pp. 279-287, 2002.
  8. Y. Wang, W. Jia, T. Strout, A. Schempf, H. Zhang, B. Li, J. Cui, Y. Lei, "Ammonia gas sensor using polypyrrole-coated $TiO_2$/ZnO nanofibers," Electroanalysis, Vol. 21, pp. 1432-1438, 2009. https://doi.org/10.1002/elan.200904584
  9. X. Fu, C. Jia, Z. Wan, X. Weng, J. Xie, L. Deng, "Hybrid electrochromic film based on polyaniline and $TiO_2$ nanorods array," Organic Electronics, Vol. 15, pp. 2702-2709, 2014. https://doi.org/10.1016/j.orgel.2014.07.040
  10. S. Radhakrishnan, C. R. Siju, D. Mahanta, S. Patil, G. Madras, "Conducting polyaniline-nana-$TiO_2$ composites for ssmart corrosion resistant coatings," Electrochimica Acta, Vol. 54, pp. 1249-1254, 2009. https://doi.org/10.1016/j.electacta.2008.08.069
  11. H. Wang, L. Ma, M. Gan, T. Zhou, X. Sun, W. Dai. H. Wang, S. Wang, "Fabrication of polyaniline/urchin-like mesoporous $TiO_2$ spheres nanocomposite and its application in supercapacitors," Electrochimica Acta, Vol. 163, pp. 232-237, 2015. https://doi.org/10.1016/j.electacta.2015.02.088
  12. S. Barman, F. Deng, R. L. McCreery, "Conducting polymer memory devices based on dyamic doping," J. Am. Chem. Soc., Vol. 130, pp. 11073-11081, 2008. https://doi.org/10.1021/ja802673w
  13. P. M. Dziewonski, M. Grzeszczuk, "Towards $TiO_2$-conducting polymer hybrid materials for lithium ion batteries," Electrochimica Acta, Vol. 55, pp. 3336-3347, 2010. https://doi.org/10.1016/j.electacta.2010.01.043