DOI QR코드

DOI QR Code

K Addition Effect of Co3O4-based Catalyst for N2O Decomposition

N2O 분해반응용 Co3O4 기반 촉매의 K첨가 효과

  • Hwang, Ra Hyun (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Park, Ji Hye (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Baek, Jeong Hun (Korea Institute of Energy Research) ;
  • Im, Hyo Been (Korea Institute of Energy Research) ;
  • Yi, Kwang Bok (Department of Chemical Engineering Education, Chungnam National University)
  • 황라현 (충남대학교 에너지과학기술대학원) ;
  • 박지혜 (충남대학교 에너지과학기술대학원) ;
  • 백정훈 (한국에너지기술연구원) ;
  • 임효빈 (한국에너지기술연구원) ;
  • 이광복 (충남대학교 화학공학교육과)
  • Received : 2017.07.26
  • Accepted : 2017.08.28
  • Published : 2018.03.30

Abstract

$Co_3O_4$ catalysts for $N_2O$ decomposition were prepared by co-precipitation method. Ce and Zr were added during the preparation of the catalyst as promoter with the molar ratio (Ce or Zr) / Co = 0.05. Also, 1 wt% $K_2CO_3$ was doped to the prepared catalyst with impregnation method to investigate the effect of K on the catalyst performance. The prepared catalysts were characterized with SEM, BET, XRD, XPS and $H_2-TPR$. The $Co_3O_4$ catalyst exhibited a spinel crystal phase, and the addition of the promoter increased the specific surface area and reduced the particle and crystal size. It was confirmed that the doping of K improves the catalytic activity by increasing the concentration of $Co^{2+}$ in the catalyst which is an active site for catalytic reaction. The catalytic activity tests were carried out at a GHSV of $45,000h^{-1}$ and a temperature range of $250{\sim}375^{\circ}C$. The K-impregnated $Co_3O_4$ catalyst showed much higher activity than $Co_3O_4$ catalysts with promoter only. It is found that the K-impregnation increased the concentration of $Co^{2+}$ more than the added of promoter did, and lowered the reduction temperature to a great extent.

$N_2O$ 촉매 분해 반응을 위한 $Co_3O_4$ 촉매는 공침법을 이용하여 제조하였으며, 조촉매로서 Ce 및 Zr의 양을 (Ce 또는 Zr)/Co = 0.05의 몰비로 고정하여 제조하였다. 또한 K가 촉매에 미치는 영향을 조사하기 위해 1 wt%의 $K_2CO_3$를 함침하여 촉매를 제조하였다. 제조된 촉매의 특성은 BET, SEM, XRD, $H_2-TPR$, XPS를 통해 분석하였다. $Co_3O_4$ 촉매는 스피넬 결정상을 나타냈으며, 조촉매의 첨가는 입자 크기와 결정 크기를 감소시켜 비표면적을 증가시키는 것으로 나타났다. K의 도핑은 촉매 활성 물질인 Co의 활성 종인 $Co^{2+}$의 농도를 증가시켜 촉매 활성을 향상시키는 것으로 확인되었다. $N_2O$ 분해 반응 테스트는 $GHSV=45,000h^{-1}$, $250{\sim}375^{\circ}C$에서 수행되었으며 $Co_3O_4$ 촉매에 조촉매를 첨가하였을 때도 반응성이 증가하였지만, K를 함침하면 활성이 더욱 크게 증가하는 것으로 나타났다. K의 도핑이 활성 종인 $Co^{2+}$의 농도를 증가시키며, 환원온도를 낮춰 주어 활성에 큰 영향을 주는 것으로 확인하였다.

Keywords

References

  1. Chang, K. S., "Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide," J. Korean Ind. Eng. Chem., 19(1), 17-26 (2008).
  2. Cho, S. S., et al., "$N_2O$ Reduction Technologies and Current Status of Related CDM Projects," KIC News, 12(3), 1-13 (2009).
  3. Tanaka, S. I., et al., "Mechanism of $O_2$ Desorption during $N_2O$ Decomposition on an Oxidized Rh/USY Catalyst," J. Catal., 200(2), 203-208 (2001). https://doi.org/10.1006/jcat.2001.3197
  4. Galle, M., et al., "Thermal $N_2O$ Decomposition in Regenerative Heat Exchanger Reactors," Chem. Eng. Sci., 56(4), 1587-1595 (2001). https://doi.org/10.1016/S0009-2509(00)00386-9
  5. Perez-Ramirez, J., et al., "Formation and Control of $N_2O$ in Nitric Acid Production: Where do we Stand Today?," Appl. Catal., B, 44(2), 117-151 (2003). https://doi.org/10.1016/S0926-3373(03)00026-2
  6. Kannan, S., and Swamy, C. S., "Catalytic Decomposition of Nitrous Oxide over Calcined Cobalt Aluminum Hydrotalcites," Catal. Today, 53(4), 725-737 (1999). https://doi.org/10.1016/S0920-5861(99)00159-5
  7. Yan, L., et al., "Catalytic Decomposition of $N_2O$ over $M_xCo_{1-x}$ $Co_2O_4$ (M=Ni, Mg) Spinel Oxides," Appl. Catal., B, 45(2), 85-90 (2003). https://doi.org/10.1016/S0926-3373(03)00174-7
  8. Abu-Zied, B. M., et al., "Nitrous Oxide Decomposition over Transition Metal Exchanged ZSM-5 Zeolites Prepared by the Solid-State Ion-Exchange Method," Appl. Catal., B, 84(1), 277-288 (2008). https://doi.org/10.1016/j.apcatb.2008.04.004
  9. Curdaneli, P. E., and Ozkar, S., "Ruthenium(III) Ion-Exchanged Zeolite Y as Highly Active and Reusable Catalyst in Decomposition of Nitrous Oxide to Sole Nitrogen and Oxygen," Microporous Mesoporous Mater., 196, 51-58 (2014). https://doi.org/10.1016/j.micromeso.2014.04.052
  10. Asano, K., et al., "Potassium-doped $Co_3O_4$ Catalyst for Direct Decomposition of $N_2O$," Appl. Catal., B, 78(3), 242-249 (2008). https://doi.org/10.1016/j.apcatb.2007.09.016
  11. Hu, H., et al., "In Situ DRIFTs Investigation of the Low-Temperature Reaction Mechanism over Mn-Doped $Co_3O_4$ for the Selective Catalytic Reduction of $NO_x$ with $NH_3$," J. Phys. Chem. C, 119(40), 22924-22933 (2015). https://doi.org/10.1021/acs.jpcc.5b06057
  12. Xue, L., et al., "Catalytic Decomposition of $N_2O$ over $CeO_2$ Promoted $Co_3O_4$ Spinel Catalyst," Appl. Catal., B, 75(3), 167-174 (2007). https://doi.org/10.1016/j.apcatb.2007.04.013
  13. Maniak, G., et al., "Rationales for the Selection of the Best Precursor for Potassium Doping of Cobalt Spinel Based $deN_2O$ Catalyst," Appl. Catal., B, 136, 302-307 (2013).
  14. Trovarelli, A. "Catalytic Properties of Ceria and $CeO_2$-Containing Materials," Catal. Rev. -Sci. Eng., 38(4), 439-520 (1996). https://doi.org/10.1080/01614949608006464
  15. Xue, L., et al., "Promotion Effect of Residual K on the Decomposition of $N_2O$ over Cobalt-Cerium Mixed Oxide Catalyst," Catal. Today, 126(3), 449-455 (2007). https://doi.org/10.1016/j.cattod.2007.06.021
  16. Wang, R., et al., "Improvement of Preferential CO Oxidation Activity over CuO/$Co_3O_4$-$CeO_2$ Catalysts: Effect of Co/Ce Ratio," J. Chil. Chem. Soc., 59(4), 2710-2716 (2014). https://doi.org/10.4067/S0717-97072014000400017
  17. Xue, L., et al., "Promotion Effects and Mechanism of Alkali Metals and Alkaline Earth Metals on Cobalt-Cerium Composite Oxide Catalysts for $N_2O$ Decomposition," Environ. Sci. Technol., 43(3), 890-895 (2009). https://doi.org/10.1021/es801867y
  18. Haneda, M., et al., "Alkali Metal-Doped Cobalt Oxide Catalysts for NO Decomposition," Appl. Catal., B, 46(3), 473-482 (2003). https://doi.org/10.1016/S0926-3373(03)00287-X
  19. Yoshino, H., et al., "Optimized Synthesis Method for K/$Co_3O_4$ Catalyst Towards Direct Decomposition of $N_2O$," J. Mater. Sci., 46(3), 797-805 (2011). https://doi.org/10.1007/s10853-010-4818-4