DOI QR코드

DOI QR Code

Development of a Switched Diode Asymmetric Multilevel Inverter Topology

  • Karthikeyan, D. (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology) ;
  • Krishnasamy, Vijayakumar (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology) ;
  • Sathik, Mohd. Ali Jagabar (Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology)
  • 투고 : 2017.01.30
  • 심사 : 2017.10.18
  • 발행 : 2018.03.20

초록

This paper presents a new asymmetrical multilevel inverter with a reduced number of power electronic components. The proposed multilevel inverter is analyzed using two different configurations: i) First Configuration (with a switched diode) and ii) Second Configuration (without a switched diode). The presented topologies are compared with recent multilevel inverter topologies in terms of number of switches, gate driver circuits and blocking voltages. The proposed topologies can be cascaded to generate the maximum number of output voltage levels and they are suitable for high voltage applications. Various power quality issues are addressed for both of the configurations. The proposed 11-level inverter configuration is simulated using MATLAB and it is validated with a laboratory based experimental setup.

키워드

E1PWAX_2018_v18n2_418_f0001.png 이미지

Fig. 1. Basic unit of the proposed multilevel inverter.

E1PWAX_2018_v18n2_418_f0002.png 이미지

Fig. 2. Various modes of operation for the proposed 11-level inverter.

E1PWAX_2018_v18n2_418_f0003.png 이미지

Fig. 3. Proposed multilevel inverter without a switched diode.

E1PWAX_2018_v18n2_418_f0004.png 이미지

Fig. 4. Proposed cascaded multilevel inverter topology.

E1PWAX_2018_v18n2_418_f0005.png 이미지

Fig. 5. Voltage balancing circuits: (a) for an unregulated dcsource (b) for a regulated dc source.

E1PWAX_2018_v18n2_418_f0006.png 이미지

Fig. 6. Pulse generation waveform for an 11-level inverter with a DC-link capacitor discharging period.

E1PWAX_2018_v18n2_418_f0007.png 이미지

Fig. 7. Different multilevel inverter topologies with a reduced switch count.

E1PWAX_2018_v18n2_418_f0008.png 이미지

Fig. 8. Various comparison results: (a) NLevel Vs NSwicthes; (b)NLevel Vs NSources; and (c) NLevel Vs TSV.

E1PWAX_2018_v18n2_418_f0009.png 이미지

Fig. 9. Voltage waveform across the diode and switch: (a) simulation results; (b) experimental results.

E1PWAX_2018_v18n2_418_f0010.png 이미지

Fig. 10. Simulation results of: (a) the first configuration output voltage and current waveform with a FFT spectrum; (b) the secondconfiguration output voltage and current waveform with a FFT Spectrum.

E1PWAX_2018_v18n2_418_f0011.png 이미지

Fig. 11. (a) Balanced input voltage by balancing the circuits; and (b) blocking voltage across various switches in an 11-levelinverter.

E1PWAX_2018_v18n2_418_f0012.png 이미지

Fig. 12. Output voltage and current waveforms of switched-diode configuration.

E1PWAX_2018_v18n2_418_f0013.png 이미지

Fig. 13. Experimental results of a switched-diode with a voltage FFT spectrum and power quality analyzer output.

E1PWAX_2018_v18n2_418_f0014.png 이미지

Fig. 14. Output voltage and current waveforms of the second configuration.

E1PWAX_2018_v18n2_418_f0015.png 이미지

Fig. 15. Experimental results of the second configuration with a voltage FFT spectrum and power quality analyzer output.

E1PWAX_2018_v18n2_418_f0016.png 이미지

Fig. 16. Photograph of the experimental model.

TABLE I SWITCHING SEQUENCE FOR THE PROPOSED 11-LEVEL INVERTER

E1PWAX_2018_v18n2_418_t0001.png 이미지

TABLE II COMPARISON OF THE PROPOSED TOPOLOGY IN TERMS OF THE FUNDAMENTAL MODULE AND THE NUMBER OF LEVELS

E1PWAX_2018_v18n2_418_t0002.png 이미지

TABLE III COMPARISONS OF DIFFERENT MULTILEVEL INVERTER TOPOLOGIES FOR VARIOUS PARAMETERS

E1PWAX_2018_v18n2_418_t0003.png 이미지

TABLE IV SUMMARY OF BOTH CONFIGURATIONS OF THE PROPOSED TOPOLOGY

E1PWAX_2018_v18n2_418_t0004.png 이미지

참고문헌

  1. L. Maharjan, S. Inoue, H. Akagi, and J. Asakura. "State-ofcharge (SOC)-balancing control of a battery energy storage system based on a cascade PWM converter," IEEE Trans. Power Electron, Vol. 24, No. 6, pp. 1628-1636, Jun. 2009. https://doi.org/10.1109/TPEL.2009.2014868
  2. K. Himour, K. Ghedamsi, and E. M. Berkouk, "Supervision and control of grid connected PV-Storage systems with the five level diode clamped inverter," Energy Conversion and Management, Vol. 77, pp. 98-107, Oct. 2013.
  3. M. F. Escalante, J.-.C. Vannier, and A. Arzande, "Flying capacitor multilevel inverters and DTC motor drive applications," IEEE Trans. Ind. Electron, Vol. 49, No. 4, pp. 809-815, Aug. 2002. https://doi.org/10.1109/TIE.2002.801231
  4. K. Ramani, M. A. J. Sathik, and S. Sivakumar, "A new symmetric multilevel inverter topology using single and double source sub-multilevel inverters," J. Power Electron., Vol. 15, No. 1, pp. 96-105, Jan. 2015. https://doi.org/10.6113/JPE.2015.15.1.96
  5. A. Mokhberdoran and A. Ajami. "Symmetric and asymmetric design and implementation of new cascaded multilevel inverter topology," IEEE Trans. Power Electron., Vol. 29, No. 2, pp. 6712-6724, Dec. 2014. https://doi.org/10.1109/TPEL.2014.2302873
  6. R. S. Alishah, S. H. Hosseini, E. Babaei, and M. Sabahi, "Optimal design of new cascaded switch-ladder multilevel inverter structure," IEEE Trans. Ind. Electron., Vol. 29, No. 12, pp. 6712-6724, Dec. 2014.
  7. R. Samanbakhsh and A. Taheri, "Reduction of power electronic components in multilevel converters using new switched capacitor-diode structure," IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 7204-7214, Nov. 2016. https://doi.org/10.1109/TIE.2016.2569059
  8. E. Babaei and S. S. Gowgani, "Hybrid multilevel inverter using switched capacitor units," IEEE Trans. Ind. Electron., Vol. 61, No. 9, pp. 4614-4621, Sep. 2014. https://doi.org/10.1109/TIE.2013.2290769
  9. A. Farakhor, R. Reza Ahrabi, H. Ardi, and S. N. Ravadanegh, "Symmetric and asymmetric transformer based cascaded multilevel inverter with minimum number of components," IET Power Electron., Vol. 8, No. 6, pp. 1052-1060, Jun. 2015. https://doi.org/10.1049/iet-pel.2014.0378
  10. J. S. Choi and F. S. Kang, "Seven-level PWM inverter employing series-connected capacitors paralleled to a single DC voltage source," IEEE Trans. Ind. Electron., Vol. 62, No. 6, pp. 3448-3459, Jun. 2015. https://doi.org/10.1109/TIE.2014.2370948
  11. E. Babaei and S. H. Hosseini., "New cascaded multilevel inverter topology with minimum number of switches," Energy Conversion and Management, Vol. 50, No. 11, pp. 2761-2767, Jul. 2009. https://doi.org/10.1016/j.enconman.2009.06.032
  12. E. Babaei, M. F. Kangarlu, and M. Sabahi, "Extended multilevel converters: An attempt to reduce the number of independent DC voltage sources in cascaded multilevel converters," IET Power Electron., Vol. 7, No. 1, pp. 157-166, Jan. 2014. https://doi.org/10.1049/iet-pel.2013.0057
  13. K. K. Gupta and S. Jain. "Topology for multilevel inverters to attain maximum number of levels from given DC sources," IET Power Electron., Vol. 5, No. 4, pp. 435-446, Apr. 2012. https://doi.org/10.1049/iet-pel.2011.0178
  14. M. F. Kangarlu and E. Babaei, "Cross-switched multilevel inverter: an innovative topology," IET Power Electron., Vol. 6, No. 4, pp. 642-651, Apr. 2013. https://doi.org/10.1049/iet-pel.2012.0265
  15. Y. Ounejjar, K. Al-Haddad, and L. A. Dessaint, "A novel six-band hysteresis control for the packed U cells seven-level converter: Experimental validation," IEEE Trans. Ind. Electron., Vol. 59, No. 10, pp. 3808-3816, Oct. 2012. https://doi.org/10.1109/TIE.2011.2161059
  16. K. K. Gupta, A. Ranjan, P. Bhatnagar, L. K. Sahu, and S. Jain, "Multilevel inverter topologies with reduced device count: A review," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 135-151, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2405012
  17. S. Kouro, M. Malinowski, K. Gopakumar, J. Pou, L. Franquelo, B. Wu, J. Rodriguez, M. Perez, and J. Leon., "Recent advances and industrial applications of multilevel converters," IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2553-2580, Aug. 2010. https://doi.org/10.1109/TIE.2010.2049719
  18. R. S. Alishah, D. Nazarpour, S. H. Hosseini, and M. Sabahi, "New hybrid structure for multilevel inverter with fewer number of components for high-voltage levels," IET Power Electron., Vol. 7, No. 1, pp. 96-104, Jan. 2014. https://doi.org/10.1049/iet-pel.2013.0156
  19. M. F. Kangarlu and E. Babaei, "A generalized cascaded multilevel inverter using series connection of submultilevel inverters," IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 625-636, Feb. 2013. https://doi.org/10.1109/TPEL.2012.2203339
  20. E. Samadaei, S. A. Gholamian, A. Sheikholeslami, and J. Adabi, "An envelope type (E-type) module: Asymmetric multilevel inverters with reduced components," IEEE Trans. Ind. Electron., Vol. 63, No. 11, pp. 7148-7156, Nov. 2016. https://doi.org/10.1109/TIE.2016.2520913
  21. M. A. J. Sathik, S. H. E. A. Aleem, R. Kannan, and A. F. Zobaa, "A new switched DC-link capacitor-based multilevel converter (SDC2MLC)," Electric Power Components and Systems, Vol. 45, No. 9, pp. 1001-1015, Jun. 2017. https://doi.org/10.1080/15325008.2017.1319434
  22. Y. Ye, K. W. E. Cheng, J. Liu, and K. Ding, "A step-up switched-capacitor multilevel inverter with self-voltage balancing," IEEE Trans. Ind. Electron, Vol. 61, No. 12, pp. 6672-6680, Dec. 2014. https://doi.org/10.1109/TIE.2014.2314052
  23. M. Perez, J. Rodriguez, J. Pontt, and S. Kouro, "Power distribution in hybrid multi-cell converter with nearest level modulation," IEEE International Symposium on Ind. Electron, pp. 736-741, 2007.