DOI QR코드

DOI QR Code

Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish

  • Jeong, Jin-Woo (Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine) ;
  • Cha, Hee-Jae (Departments of Parasitology and Genetics, Kosin University College of Medicine) ;
  • Han, Min Ho (Natural products Research Team, Marine Biodiversity Institute of Korea) ;
  • Hwang, Su Jung (Department of Pharmacy, College of Pharmacy, Inje University) ;
  • Lee, Dae-Sung (Natural products Research Team, Marine Biodiversity Institute of Korea) ;
  • Yoo, Jong Su (Natural products Research Team, Marine Biodiversity Institute of Korea) ;
  • Choi, Il-Whan (Department of Microbiology, College of Medicine, Inje University) ;
  • Kim, Suhkmann (Department of Chemistry, College of Natural Sciences, Pusan National University) ;
  • Kim, Heui-Soo (Department of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Gi-Young (Laboratory of Immunobiology, Department of Marine Life Sciences, Jeju National University) ;
  • Hong, Su Hyun (Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine) ;
  • Park, Cheol (Department of Molecular Biology, College of Natural Sciences & Human Ecology, Dongeui University) ;
  • Lee, Hyo-Jong (Department of Pharmacy, College of Pharmacy, Inje University) ;
  • Choi, Yung Hyun (Anti-Aging Research Center and Department of Biochemistry, Dongeui University College of Korean Medicine)
  • Received : 2016.12.11
  • Accepted : 2017.01.18
  • Published : 2018.03.01

Abstract

Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$), and cytokines including tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$ in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of $NF-{\kappa}B$ p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.

Keywords

References

  1. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787. https://doi.org/10.1038/35021228
  2. Amin, A. R., Attur, M. and Abramson, S. B. (1999) Nitric oxide synthase and cyclooxygenases: distribution, regulation, and intervention in arthritis. Curr. Opin. Rheumatol. 11, 202-209. https://doi.org/10.1097/00002281-199905000-00009
  3. Brune, B., Dehne, N., Grossmann, N., Jung, M., Namgaladze, D., Schmid, T., von Knethen, A. and Weigert, A. (2013) Redox control of inflammation in macrophages. Antioxid. Redox Signal. 19, 595-637. https://doi.org/10.1089/ars.2012.4785
  4. Cheong, S. H., Yang, H. W., Ko, E. Y., Ahn, G., Lee, W., Kim, D., Jeon, Y. J. and Kim, K. N. (2016) Anti-inflammatory effects of trans-1,3-diphenyl-2,3-epoxypropane-1-one in zebrafish embryos in vivo model. Fish Shellfish Immunol. 50, 16-20. https://doi.org/10.1016/j.fsi.2016.01.018
  5. Choi, Y. H. and Park, H. Y. (2012) Anti-inflammatory effects of spermidine in lipopolysaccharide-stimulated BV2 microglial cells. J. Biomed. Sci. 19, 31. https://doi.org/10.1186/1423-0127-19-31
  6. Conti, B., Tabarean, I., Andrei, C. and Bartfai, T. (2004) Cytokines and fever. Front. Biosci. 9, 1433-1449. https://doi.org/10.2741/1341
  7. Cunha, T. M., Verri, W. A. Jr., Schivo, I. R., Napimoga, M. H., Parada, C. A., Poole, S., Teixeira, M. M., Ferreira, S. H. and Cunha, F. Q. (2008) Crucial role of neutrophils in the development of mechanical inflammatory hypernociception. J. Leukoc. Biol. 83, 824-832. https://doi.org/10.1189/jlb.0907654
  8. Czura, C. J., Friedman, S. G. and Tracey, K. J. (2003) Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. J. Endotoxin Res. 9, 409-413. https://doi.org/10.1177/09680519030090060401
  9. Dibbert, B., Weber, M., Nikolaizik, W. H., Vogt, P., Schoni, M. H., Blaser, K. and Simon, H. U. (1999) Cytokine-mediated Bax deficiency and consequent delayed neutrophil apoptosis: a general mechanism to accumulate effector cells in inflammation. Proc. Natl. Acad. Sci. U.S.A. 96, 13330-13335. https://doi.org/10.1073/pnas.96.23.13330
  10. Eisenberg, T., Knauer, H., Schauer, A., Bottner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., Ring, J., Schroeder, S., Magnes, C., Antonacci, L., Fussi, H., Deszcz, L., Hartl, R., Schraml, E., Criollo, A., Megalou, E., Weiskopf, D., Laun, P., Heeren, G., Breitenbach, M., Grubeck-Loebenstein, B., Herker, E., Fahrenkrog, B., Frohlich, K. U., Sinner, F., Tavernarakis, N., Minois, N., Kroemer, G. and Madeo, F. (2009) Induction of autophagy by spermidine promotes longevity. Nat. Cell Biol. 11, 1305-1314. https://doi.org/10.1038/ncb1975
  11. Eom, S. A., Kim, D. W., Shin, M. J., Ahn, E. H., Chung, S. Y., Sohn, E. J., Jo, H. S., Jeon, S. J., Kim, D. S., Kwon, H. Y., Cho, S. W., Han, K. H., Park, J., Eum, W. S. and Choi, S. Y. (2015) Protective effects of PEP-1-catalase on stress-induced cellular toxicity and MPTP-induced Parkinson's disease. BMB Rep. 48, 395-400. https://doi.org/10.5483/BMBRep.2015.48.7.197
  12. Freire, M. O. and Van Dyke, T. E. (2013) Natural resolution of inflammation. Periodontol. 2000 63, 149-164. https://doi.org/10.1111/prd.12034
  13. Ginsburg, I. and Koren, E. (2008) Are cationic antimicrobial peptides also 'double-edged swords'? Expert Rev. Anti Infect. Ther. 6, 453-462.
  14. Haddad, J. J. and Land, S. C. (2002) Redox signaling-mediated regulation of lipopolysaccharide-induced proinflammatory cytokine biosynthesis in alveolar epithelial cells. Antioxid. Redox Signal. 4, 179-193. https://doi.org/10.1089/152308602753625942
  15. Herbomel, P., Thisse, B. and Thisse, C. (2001) Zebrafish early macrophages colonize cephalic mesenchyme and developing brain, retina, and epidermis through a M-CSF receptor-dependent invasive process. Dev. Biol. 238, 274-288. https://doi.org/10.1006/dbio.2001.0393
  16. Kauppinen, A., Suuronen, T., Ojala, J., Kaarniranta, K. and Salminen, A. (2013) Antagonistic crosstalk between NF-${\kappa}B$ and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal. 25, 1939-1948. https://doi.org/10.1016/j.cellsig.2013.06.007
  17. Ko, S. C. and Jeon, Y. J. (2015) Anti-inflammatory effect of enzymatic hydrolysates from Styela clava flesh tissue in lipopolysaccharide-stimulated RAW 264.7 macrophages and in vivo zebrafish model. Nutr. Res. Pract. 9, 219-226. https://doi.org/10.4162/nrp.2015.9.3.219
  18. Larque, E., Sabater-Molina, M. and Zamora, S. (2007) Biological significance of dietary polyamines. Nutrition 23, 87-95. https://doi.org/10.1016/j.nut.2006.09.006
  19. Le Guyader, D., Redd, M. J., Colucci-Guyon, E., Murayama, E., Kissa, K., Briolat, V., Mordelet, E., Zapata, A., Shinomiya, H. and Herbomel, P. (2008) Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111, 132-141.
  20. Lee, H., Pyo, M. J., Bae, S. K., Heo, Y., Kim, C. G., Kang, C. and Kim, E. (2015) Improved therapeutic profiles of PLA2-free bee venom prepared by ultrafiltration method. Toxicol. Res. 31, 33-40. https://doi.org/10.5487/TR.2015.31.1.033
  21. Lee, I. C., Lee, S. M., Ko, J. W., Park, S. H., Shin, I. S., Moon, C., Kim, S. H. and Kim, J. C. (2016) Role of mitogen-activated protein kinases and nuclear factor-${\kappa}B$ in 1,3-dichloro-2-propanol-induced hepatic injury. Lab. Anim. Res. 32, 24-33. https://doi.org/10.5625/lar.2016.32.1.24
  22. Loser, C. (2000) Polyamines in human and animal milk. Br. J. Nutr. 84, S55-S58.
  23. Lu, Y. C., Jayakumar, T., Duann, Y. F., Chou, Y. C., Hsieh, C. Y., Yu, S. Y., Sheu, J. R. and Hsiao, G. (2011) Chondroprotective role of sesamol by inhibiting MMPs expression via retaining NF-${\kappa}B$ signaling in activated SW1353 cells. J. Agric. Food Chem. 59, 4969-4978. https://doi.org/10.1021/jf1046738
  24. Matthy, M. A. and Zimmerman, G. A. (2005) Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am. J. Respir. Cell Mol. Biol. 33, 319-327. https://doi.org/10.1165/rcmb.F305
  25. Merentie, M., Uimari, A,. Pietila, M., Sinervirta, R., Keinanen, T. A., Vepsalainen, J., Khomutov, A., Grigorenko, N., Herzig, K. H., Janne, J. and Alhonen, L. (2007) Oxidative stress and inflammation in the pathogenesis of activated polyamine catabolism-induced acute pancreatitis. Amino Acids 33, 323-330. https://doi.org/10.1007/s00726-007-0522-3
  26. Mills, E. L. and O'Neill, L. A. (2016) Reprogramming mitochondrial metabolism in macrophages as an anti-inflammatory signal. Eur. J. Immunol. 46, 13-21. https://doi.org/10.1002/eji.201445427
  27. Minois, N. (2014) Molecular basis of the 'anti-aging' effect of spermidine and other natural polyamines - a mini-review. Gerontology 60, 319-326. https://doi.org/10.1159/000356748
  28. Minois, N., Carmona-Gutierrez, D., Bauer, M. A., Rockenfeller, P., Eisenberg, T., Brandhorst, S., Sisgrist, S. J., Kroemer, G. and Madeo, F. (2012) Spermidine promotes stress resistance in Drosophila melanogaster through autophagy-dependent and -independent pathways. Cell Death Dis. 3, e401. https://doi.org/10.1038/cddis.2012.139
  29. Mitroulis, I., Alexaki, V. I., Kourtzelis, I., Ziogas, A., Hajishengallis, G. and Chavakis, T. (2015) Leukocyte integrins: role in leukocyte recruitment and as therapeutic targets in inflammatory disease. Pharmacol. Ther. 147, 123-135. https://doi.org/10.1016/j.pharmthera.2014.11.008
  30. Moinard, C., Cynober, L. and de Bandt, J. P. (2005) Polyamines: metabolism and implications in human diseases. Clin. Nutr. 24, 184-197. https://doi.org/10.1016/j.clnu.2004.11.001
  31. Moron, B., Spalinger, M., Kasper, S., Atrott, K., Frey-Wagner, I., Fried, M., McCole, D. F., Rogler, G. and Scharl, M. (2013) Activation of protein tyrosine phosphatase non-receptor type 2 by spermidine exerts anti-inflammatory effects in human THP-1 monocytes and in a mouse model of acute colitis. PLoS ONE 8, e73703. https://doi.org/10.1371/journal.pone.0073703
  32. Morselli, E., Marino, G., Bennetzen, M. V., Eisenberg, T., Megalou, E., Schroeder, S., Cabrera, S., Benit, P., Rustin, P., Criollo, A., Kepp, O., Galluzzi, L., Shen, S., Malik, S. A., Maiuri, M. C., Horio, Y., Lopez-Otin, C., Andersen, J. S., Tavernarakis, N., Madeo, F. and Kroemer, G. (2011) Spermidine and resveratrol induce autophagy by distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615-629.
  33. Muralidharan, S. and Mandrekar, P. (2013) Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J. Leukoc. Biol. 94, 1167-1184. https://doi.org/10.1189/jlb.0313153
  34. Nikaido, H. (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593-656. https://doi.org/10.1128/MMBR.67.4.593-656.2003
  35. Nirwane, A., Sridhar, V. and Majumdar, A. (2016) Neurobehavioural changes and brain oxidative stress induced by acute exposure to GSM900 mobile phone radiations in zebrafish (Danio rerio). Toxicol. Res. 32, 123-132. https://doi.org/10.5487/TR.2016.32.2.123
  36. Paul, S. and Kang, S. C. (2013) Natural polyamine inhibits mouse skin inflammation and macrophage activation. Inflamm. Res. 62, 681-688. https://doi.org/10.1007/s00011-013-0620-5
  37. Rigoglou, S. and Papavassiliou, A. G. (2013) The NF-${\kappa}B$ signalling pathway in osteoarthritis. Int. J. Biochem. Cell Biol. 45, 2580-2584. https://doi.org/10.1016/j.biocel.2013.08.018
  38. Sava, I. G., Battaglia, V., Rossi, C. A., Salvi, M. and Toninello, A. (2006) Free radical scavenging action of the natural polyamine spermine in rat liver mitochondria. Free Radic. Biol. Med. 41, 1272-1281. https://doi.org/10.1016/j.freeradbiomed.2006.07.008
  39. Sikora, J. P. (2002) Immunotherapy in the management of sepsis. Arch. Immunol. Ther. Exp. (Warsz.) 50, 317-324.
  40. Tan, H. Y., Wang, N., Li, S., Hong, M., Wang, X. and Feng, Y. (2016) The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid. Med. Cell. Longeva. 2016, 2795090.
  41. Varga, A., Budai, M. M., Milesz, S., Bacsi, A., Tozser, J. and Benko, S. (2013) Ragweed pollen extract intensifies lipopolysaccharideinduced priming of NLRP3 inflammasome in human macrophages. Immunology 138, 392-401. https://doi.org/10.1111/imm.12052
  42. Wang, L., Xu, M. L., Liu, J., Wang, Y., Hu, J. H. and Wang, M. H. (2015) Sonchus asper extract inhibits LPS-induced oxidative stress and pro-inflammatory cytokine production in RAW264.7 macrophages. Nutr. Res. Pract. 9, 579-585. https://doi.org/10.4162/nrp.2015.9.6.579
  43. Wijesinghe, W. A., Kim, E. A., Kang, M. C., Lee, W. W., Lee, H. S., Vairappan, C. S. and Jeon, Y. J. (2014) Assessment of anti-inflammatory effect of $5{\beta}$-hydroxypalisadin B isolated from red seaweed Laurencia snackeyi in zebrafish embryo in vivo model. Environ. Toxicol. Pharmacol. 37, 110-117.
  44. Williams, M. R., Azcutia, V., Newton, G., Alcaide, P. and Luscinskas, F. W. (2011) Emerging mechanisms of neutrophil recruitment across endothelium. Trends Immunol. 32, 461-469. https://doi.org/10.1016/j.it.2011.06.009
  45. Yang, L., Bu, L., Sun, W., Hu, L. and Zhang, S. (2014) Functional characterization of mannose-binding lectin in zebrafish: implication for a lectin-dependent complement system in early embryos. Dev. Comp. Immunol. 46, 314-322. https://doi.org/10.1016/j.dci.2014.05.003
  46. Yang, Q., Zheng, C., Cao, J., Cao, G., Shou, P., Lin, L., Velletri, T., Jiang, M., Chen, Q., Han, Y., Li, F., Wang, Y., Cao, W. and Shi, Y. (2016) Spermidine alleviates experimental autoimmune encephalomyelitis through inducing inhibitory macrophages. Cell Death Differ. 23, 1850-1861. https://doi.org/10.1038/cdd.2016.71
  47. Zhang, L. and Wang, C. C. (2014) Inflammatory response of macrophages in infection. HBPD INT. 13, 138-152.

Cited by

  1. Polyamine concentration is increased in thoracic ascending aorta of patients with bicuspid aortic valve pp.1615-2573, 2017, https://doi.org/10.1007/s00380-017-1087-z
  2. Spermidine in health and disease vol.359, pp.6374, 2018, https://doi.org/10.1126/science.aan2788
  3. Polyamine Metabolism and Gene Methylation in Conjunction with One-Carbon Metabolism vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103106
  4. Particulate matter 2.5 damages skin cells by inducing oxidative stress, subcellular organelle dysfunction, and apoptosis vol.92, pp.6, 2018, https://doi.org/10.1007/s00204-018-2197-9
  5. Distinct Immunomodulatory Effects of Spermine Oxidase in Colitis Induced by Epithelial Injury or Infection vol.9, pp.1664-3224, 2018, https://doi.org/10.3389/fimmu.2018.01242
  6. Polyamine Metabolism and Oxidative Protein Folding in the ER as ROS-Producing Systems Neglected in Virology vol.19, pp.4, 2018, https://doi.org/10.3390/ijms19041219
  7. Fasiglifam (TAK-875), a G Protein-Coupled Receptor 40 (GPR40) Agonist, May Induce Hepatotoxicity through Reactive Oxygen Species Generation in a GPR40-Dependent Manner vol.26, pp.6, 2018, https://doi.org/10.4062/biomolther.2017.225
  8. Spermidine Prevents Heart Injury in Neonatal Rats Exposed to Intrauterine Hypoxia by Inhibiting Oxidative Stress and Mitochondrial Fragmentation vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/5406468
  9. Reactive oxygen species are responsible for the cell aggregation and production of pro-inflammatory mediators in phorbol ester (PMA)-treated U937 cells on gelatin-coated dishes through upregulation of vol.60, pp.4, 2018, https://doi.org/10.1080/03008207.2018.1530770
  10. Protective Effects of Spermidine Against Cirrhotic Cardiomyopathy in Bile Duct-Ligated Rats vol.76, pp.3, 2018, https://doi.org/10.1097/fjc.0000000000000872
  11. Antidepressant-Like Effects of Coumaroylspermidine Extract From Safflower Injection Residues vol.11, pp.None, 2018, https://doi.org/10.3389/fphar.2020.00713
  12. A new long-wavelength fluorescent probe for tracking peroxynitrite in live cells and inflammatory sites of zebrafish vol.145, pp.3, 2020, https://doi.org/10.1039/c9an01934k
  13. Metabolomics profiling to investigate nanomaterial toxicity in vitro and in vivo vol.14, pp.6, 2020, https://doi.org/10.1080/17435390.2020.1764123
  14. Spermidine Inhibits Joints Inflammation and Macrophage Activation in Mice with Collagen-Induced Arthritis vol.14, pp.None, 2018, https://doi.org/10.2147/jir.s313179
  15. Tribulus terrestris L. Extract Protects against Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophage and Zebrafish via Inhibition of Akt/MAPKs and NF-κB/iNOS-NO Signaling Pathways vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/6628561
  16. Spermidine ameliorates high-fat diet-induced hepatic steatosis and adipose tissue inflammation in preexisting obese mice vol.265, pp.None, 2018, https://doi.org/10.1016/j.lfs.2020.118739
  17. Natural antioxidants for neuroinflammatory disorders and possible involvement of Nrf2 pathway: A review vol.7, pp.2, 2021, https://doi.org/10.1016/j.heliyon.2021.e06216
  18. Preventive and Therapeutic Spermidine Treatment Attenuates Acute Colitis in Mice vol.69, pp.6, 2018, https://doi.org/10.1021/acs.jafc.0c07095
  19. Beyond Antioxidant Effects: Nature-Based Templates Unveil New Strategies for Neurodegenerative Diseases vol.10, pp.3, 2018, https://doi.org/10.3390/antiox10030367
  20. Phaseolin Attenuates Lipopolysaccharide-Induced Inflammation in RAW 264.7 Cells and Zebrafish vol.9, pp.4, 2018, https://doi.org/10.3390/biomedicines9040420
  21. Age-related differences in corneal nerve regeneration after SMILE and the mechanism revealed by metabolomics vol.209, pp.None, 2021, https://doi.org/10.1016/j.exer.2021.108665
  22. Suppression of Lipopolysaccharide-Induced Inflammatory and Oxidative Response by 5-Aminolevulinic Acid in RAW 264.7 Macrophages and Zebrafish Larvae vol.29, pp.6, 2021, https://doi.org/10.4062/biomolther.2021.030
  23. Schisandrae Fructus ethanol extract attenuates particulate matter 2.5-induced inflammatory and oxidative responses by blocking the activation of the ROS-dependent NF-κB signaling pathway vol.15, pp.6, 2018, https://doi.org/10.4162/nrp.2021.15.6.686
  24. Spermidine Enhances Nutritional Indices of Bombyx mori (Lepidoptera: Bombycidae) Larvae vol.57, pp.1, 2018, https://doi.org/10.18474/jes20-88