References
- Ajay, M., Gilani, A. U. and Mustafa, M. R. (2003) Effects of flavonoids on vascular smooth muscle of the isolated rat thoracic aorta. Life Sci. 74, 603-612. https://doi.org/10.1016/j.lfs.2003.06.039
-
Akata, T. (2007) Cellular and molecular mechanisms regulating vascular tone. Part 2: regulatory mechanisms modulating
$Ca^{2+}$ mobilization and/or myofilament$Ca^{2+}$ sensitivity in vascular smooth muscle cells. J. Anesth. 21, 232-242. https://doi.org/10.1007/s00540-006-0488-4 - Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y. and Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J. Biol. Chem. 271, 20246-20249. https://doi.org/10.1074/jbc.271.34.20246
- Appel, L. J., Brands, M. W., Daniels, S. R., Karanja, N., Elmer, P. J. and Sacks, F. M. (2006) Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension 47, 296-308. https://doi.org/10.1161/01.HYP.0000202568.01167.B6
- Brietz, A., Schuch, K. V., Wangorsch, G., Lorenz, K. and Dandekar, T. (2016) Analyzing ERK 1/2 signalling and targets. Mol. Biosyst. 12, 2436-2446. https://doi.org/10.1039/C6MB00255B
- Evora, P. R., Cable, D. G., Chua, Y. L., Rodrigues, A. J., Pearson, P. J. and Schaff, H. V. (2007) Nitric oxide and prostacyclin-dependent pathways involvement on in vitro induced hypothermia. Cryobiology 54, 106-113. https://doi.org/10.1016/j.cryobiol.2006.12.002
- Ferland, D. J., Darios, E. S., Neubig, R. R., Sjogren, B., Truong, N., Torres, R., Dexheimer, T. S., Thompson, J. M. and Watts, S. W. (2016) Chemerin-induced arterial contraction is Gi- and calcium-dependent. Vascul. Pharmacol. 88, 30-41.
- Gallet, C., Blaie, S., Levy-Toledano, S. and Habib, A. (2003) Thromboxane-induced ERK phosphorylation in human aortic smooth muscle cells. Adv. Exp. Med. Biol. 525, 71-73.
- Goyal, R., Mittal, A., Chu, N., Shi, L., Zhang, L. and Longo L. D. (2009) Maturation and the role of PKC-mediated contractility in ovine cerebral arteries. Am. J. Physiol. Heart Circ. Physiol. 297, H2242-H2252. https://doi.org/10.1152/ajpheart.00681.2009
- Gu, Z., Kordowska, J., Williams, G. L., Wang, C. L. and Hai, C. M. (2007) Erk1/2 MAPK and caldesmon differentially regulate podosome dynamics in A7r5 vascular smooth muscle cells. Exp. Cell Res. 313, 849-866. https://doi.org/10.1016/j.yexcr.2006.12.005
- Ito, K., Matsuzaki, M., Sasahara, T., Shin, M. and Yayama, K. (2015) Orthovanadate-induced vasoconstriction of rat mesenteric arteries is mediated by rho kinase-dependent inhibition of myosin light chain phosphatase. Biol. Pharm. Bull. 38, 1809-1816. https://doi.org/10.1248/bpb.b15-00587
- Je, H. D. and Sohn, U. D. (2009) Inhibitory effect of genistein on agonist-induced modulation of vascular contractility. Mol. Cells 27, 191-198. https://doi.org/10.1007/s10059-009-0052-9
- Jensen, K. O., Held, L., Kraus, A., Hildebrand, F., Mommsen, P., Mica, L., Wanner, G. A., Steiger, P., Moos, R. M., Simmen, H. P. and Sprengel, K. (2016) The impact of mild induced hypothermia on the rate of transfusion and the mortality in severely injured patients: a retrospective multi-centre study. Eur. J. Med. Res. 21, 37. https://doi.org/10.1186/s40001-016-0233-x
- Jeon, S. B., Jin, F., Kim, J. I., Kim, S. H., Suk, K., Chae, S. C., Jun, J. E., Park, W. H. and Kim, I. K. (2006) A role for Rho kinase in vascular contraction evoked by sodium fluoride. Biochem. Biophys. Res. Commun. 343, 27-33. https://doi.org/10.1016/j.bbrc.2006.02.120
- Kim, J. G., Sung, H. J., Ok, S. H., Kwon, S. C., Cheon, K. S., Kim, H. J., Chang, K. C., Shin, I. W., Lee, H. K., Chung, Y. K. and Sohn, J. T. (2011) Calcium sensitization involved in dexmedetomidine-induced contraction of isolated rat aorta. Can. J. Physiol. Pharmacol. 89, 681-689. https://doi.org/10.1139/y11-065
- Oh, T. G., Cha, W. C., Jo, I. J., Kang, M. J. and Lee, D. W. (2015) A survey-based study on the protocols for therapeutic hypothermia in cardiac arrest patients in Korea: focusing on the differences between level 1 and 2 centers. Clin. Exp. Emerg. Med. 2, 210-216. https://doi.org/10.15441/ceem.15.018
- Pfitzer, G. (2001) Invited review: regulation of myosin phosphorylation in smooth muscle. J. Appl. Physiol. 91, 497-503. https://doi.org/10.1152/jappl.2001.91.1.497
- Ruppert, C., Deiss, K., Herrmann, S., Vidal, M., Oezkur, M., Gorski, A., Weidemann, F., Lohse, M. J. and Lorenz, K. (2013) Interference with ERK(Thr188) phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc. Natl. Acad. Sci. U.S.A. 110, 7440-7445. https://doi.org/10.1073/pnas.1221999110
-
Sakurada, S., Takuwa, N., Sugimoto, N., Wang, Y., Seto, M., Sasaki, Y. and Takuwa, Y. (2003)
$Ca^{2+}$ -dependent activation of Rho and Rho-kinase in membrane depolarization-induced and receptor stimulation-induced vascular smooth muscle contraction. Circ. Res. 93, 548-556. -
Somlyo, A. P. and Somlyo, A. V. (2003)
$Ca^{2+}$ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiol. Rev. 83, 1325-1358. https://doi.org/10.1152/physrev.00023.2003 - Tankersley, C. G., Irizarry, R., Flanders, S. E., Rabold, R. and Frank, R. (2003) Unstable heart rate and temperature regulation predict mortality in AKR/J mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R742-R750. https://doi.org/10.1152/ajpregu.00416.2002
- Taubert, D., Berkels, R., Klaus, W. and Roesen, R. (2002) Nitric oxide formation and corresponding relaxation of porcine coronary arteries induced by plant phenols: essential structural features. J. Cardiovasc. Pharmacol. 40, 701-713. https://doi.org/10.1097/00005344-200211000-00008
- Tsai, M. H. and Jiang, M. J. (2006) Rho-kinase-mediated regulation of receptor-agonist-stimulated smooth muscle contraction. Pflugers Arch. 453, 223-232. https://doi.org/10.1007/s00424-006-0133-y
- Uehata, M., Ishizaki, T., Satoh, H., Ono, T., Kawahara, T., Morishita, T., Tamakawa, H., Yamagami, K., Inui, J., Maekawa, M. and Narumiya, S. (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990-994. https://doi.org/10.1038/40187
-
Wier, W. G. and Morgan, K. G. (2003)
${\alpha}1$ -Adrenergic signaling mechanisms in contraction of resistance arteries. Rev. Physiol. Biochem. Pharmacol. 150, 91-139. -
Wilson, D. P., Susnjar, M., Kiss, E., Sutherland, C. and Walsh, M. P. (2005) Thromboxane A2-induced contraction of rat caudal arterial smooth muscle involves activation of
$Ca^{2+}$ entry and$Ca^{2+}$ sensitization: Rho-associated kinase-mediated phosphorylation of MYPT1 at Thr-855, but not Thr-697. Biochem. J. 389, 763-774. - Wooldridge, A. A., MacDonald, J. A., Erdodi, F., Ma, C., Borman, M. A., Hartshorne, D. J. and Haystead, T. A. (2004) Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J. Biol. Chem. 279, 34496-34504. https://doi.org/10.1074/jbc.M405957200
- Zou, Q., Leung, S. W. and Vanhoutte, P. M. (2015) Transient receptor potential channel opening releases endogenous acetylcholine, which contributes to endothelium-dependent relaxation induced by mild hypothermia in spontaneously hypertensive rat but not wistar-kyoto rat arteries. J. Pharmacol. Exp. Ther. 354, 121-130. https://doi.org/10.1124/jpet.115.223693
Cited by
- Moderate hypothermia and responses to calcium channel blockers - Role of the nitric oxide vol.105, pp.1, 2018, https://doi.org/10.1556/2060.105.2018.1.2
- Moderate hypothermia and responses to calcium channel blockers - Role of the nitric oxide vol.105, pp.1, 2018, https://doi.org/10.1556/2060.105.2018.1.2