Fig. 1. Overall conversion from triangular meshes to IndoorGML
Fig. 2. Adjacency graph
Fig. 3. Four surface types in indoor space
Fig. 4. Normal vectors of architectural and nonarchitectural surfaces
Fig. 5. An example of big cells originated from Ryoo et al. (2015)
Fig. 6. Making doors and indoor network by InEditor
Fig. 7. Initial triangular meshes
Fig. 8. Surfaces
Fig. 9. Actual indoor space and final IndoorGML data
Table 1. Experiment data and results
References
- Choi, H.S., Jun, C.H., Li, Y., Cho, H., and Doh, N.J. (2013), Joint solution for the online 3D photo realistic mapping using SfM and SLAM, International Journal of Advanced Robotic Systems, Vol. 10, No.1, pp. 8-14. https://doi.org/10.5772/52854
- Cignoni, P., Montani, C., and Scopigno, R. (1998), A comparison of mesh simplification algorithms. Computers & Graphics, Vol. 22, No. 1, pp. 37-54. https://doi.org/10.1016/S0097-8493(97)00082-4
- DeCoro, C. and Tatarchuk, N. (2007) Real-time mesh simplification using the GPU, The 2007 Symposium on Interactive 3D Graphics and Games, 29 April - 2 May, Seattle, USA, pp. 161-166.
- ISO/TC211. (2003), Geographic information - Spatial schema, ISO 19107:2003, International Organization for Standardization, https://www.iso.org/standard/26012.html?browse=tc, (last date accessed: 7, November, 2018)
- Jeong, H.M., Ryoo, H.G., and Li, K.J. (2018), InFactory: a RESTful API server for easily creating IndoorGML, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 29-31 August 2018, Dar es Salaam, Tanzania, pp. 77-84.
- Jun, C.H., Kang, J.H., Yeon, S.Y., Choi, H.G., Chung, T.Y., and Doh, N.J. (2017), Towards a realistic indoor world reconstruction: preliminary results for an object-oriented 3D RGB-D mapping, Intelligent Automation and Soft Computing, Vol. 23, No. 2, pp. 207-218. https://doi.org/10.1080/10798587.2016.1186890
- Kalvin, A.D. and Taylor, R.H. (1996), Superfaces: polygonal mesh simplification with bounded error. IEEE Computer Graphics and Applications, Vol. 16, No. 3, pp. 64-77. https://doi.org/10.1109/38.491187
- Kang, H.K. and Li, K.J. (2017), A standard indoor spatial data model - OGC IndoorGML and implementation approaches, ISPRS International Journal of Geo-Information, Vol. 6, No. 4, pp. 116-140. https://doi.org/10.3390/ijgi6040116
- Kruminaite, M. and Zlatanova, S. (2014), Indoor space subdivision for indoor navigation, The 6th ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, 4-7 November, Dallas/Fort Worth, TX, USA, pp. 25-31.
- OGC. (2012), OGC city geography markup language (CityGML) encoding standard, Open Geospatial Consortium, http://www.opengeospatial.org/standards/citygml, (last date accessed: 7, November, 2018)
- OGC. (2015), OGC IndoorGML, Open Geospatial Consortium, http://www.opengeospatial.org/standards/indoorgml, (last date accessed: 7, November, 2018)
- Ryoo, H.G., Kim, T.H., and Li, K.J. (2015), Comparison between two OGC standards for indoor space: CityGML and IndoorGML, The 7th ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, 3-6 November, Seattle, USA, pp. 1-9.
- Schroeder, W.J., Zarge, J.A., and Lorensen, W.E. (1992). Decimation of triangle meshes. ACM Siggraph Computer Graphics, Vol. 26, No. 2, ACM, pp. 65-70. https://doi.org/10.1145/142920.134010
Cited by
- 포인트 클라우드를 이용한 IndoorGML 데이터의 자동적 구축 vol.38, pp.6, 2020, https://doi.org/10.7848/ksgpc.2020.38.6.611