DOI QR코드

DOI QR Code

Converting Triangulated 3D Indoor Mesh Data to OGC IndooGML

삼각분할된 3차원 실내공간데이터를 OGC IndoorGML로 변환하는 방법

  • Li, Ki-Joune (Dept. of Electrical and Computer Engineering, Pusan National University) ;
  • Kim, Dong Min (Dept. of Electrical and Computer Engineering, Pusan National University)
  • Received : 2018.11.07
  • Accepted : 2018.12.04
  • Published : 2018.12.31

Abstract

Most of 3D indoor spatial data recently constructed by many projects merely focus on the visualization rather than geospatial information applications. The 3D indoor data for visualization in 3DS or COLLADA format are based on triangular mesh representation. In order to implement meaningful applications, we need however more meaningful information in 3D indoor spatial data than visualization data in triangular meshes. For this reason, an OGC (Open Geospatial Consortium) standard, called IndoorGML(Indoor Geographic Markup Language) was published to meet the requirements on 3D indoor spatial data for several geospatial applications for indoor space more than simple visualization. It means that it becomes a critical functional requirement to convert triangular mesh representation in 3DS or COLLADA to IndoorGML. In this paper we propose a framework of the conversion, which consists of geometric, topological, and semantic construction of data from triangular meshes. An experiment carried out to validate the proposed framework is also presented in the paper.

지금까지 만들어지고 있는 실내공간데이터는 공간적 활용을 위한 데이터라고 하기 보다는 삼각분할로 표현된 3DS나 COLLADA 형식의 가시화 데이터이다. 의미 있는 공간분석이나 실내응용서비스를 개발하기 위하여서는 단순히 삼각분할로 만들어진 가시화데이터가 아니라 의미적 공간정보가 필요하다. OGC (Open Geospatial Consortium) 표준인 IndoorGML(Indoor Geographic Markup Language)은 가시화가 아니라 실내공간 분석을 비롯한 다양한 응용을 위하여 만들어진 공간데이터 형식이다. 따라서 삼각분할로 표현된 3DS나 COLLADA형식의 실내 공간데이터를 OGC IndoorGML 형식으로 변환하는 것은 중요한 작업이 된다. 본 논문에서는 이 문제를 해결하기 위하여, 삼각분할 형식으로 표현된 원시 실내 공간데이터를 기하, 위상, 그리고 의미적으로 유용한 IndoorGML로 변환하는 방법을 제시한다. 또한 이 변환 방법의 타당성을 위하여 개발된 도구도 함께 소개한다. 실제 데이터를 통한 실험을 통하여 이 방법과 개발된 도구를 검증하였다.

Keywords

GCRHBD_2018_v36n6_499_f0001.png 이미지

Fig. 1. Overall conversion from triangular meshes to IndoorGML

GCRHBD_2018_v36n6_499_f0002.png 이미지

Fig. 2. Adjacency graph

GCRHBD_2018_v36n6_499_f0003.png 이미지

Fig. 3. Four surface types in indoor space

GCRHBD_2018_v36n6_499_f0004.png 이미지

Fig. 4. Normal vectors of architectural and nonarchitectural surfaces

GCRHBD_2018_v36n6_499_f0005.png 이미지

Fig. 5. An example of big cells originated from Ryoo et al. (2015)

GCRHBD_2018_v36n6_499_f0006.png 이미지

Fig. 6. Making doors and indoor network by InEditor

GCRHBD_2018_v36n6_499_f0007.png 이미지

Fig. 7. Initial triangular meshes

GCRHBD_2018_v36n6_499_f0008.png 이미지

Fig. 8. Surfaces

GCRHBD_2018_v36n6_499_f0009.png 이미지

Fig. 9. Actual indoor space and final IndoorGML data

Table 1. Experiment data and results

GCRHBD_2018_v36n6_499_t0001.png 이미지

References

  1. Choi, H.S., Jun, C.H., Li, Y., Cho, H., and Doh, N.J. (2013), Joint solution for the online 3D photo realistic mapping using SfM and SLAM, International Journal of Advanced Robotic Systems, Vol. 10, No.1, pp. 8-14. https://doi.org/10.5772/52854
  2. Cignoni, P., Montani, C., and Scopigno, R. (1998), A comparison of mesh simplification algorithms. Computers & Graphics, Vol. 22, No. 1, pp. 37-54. https://doi.org/10.1016/S0097-8493(97)00082-4
  3. DeCoro, C. and Tatarchuk, N. (2007) Real-time mesh simplification using the GPU, The 2007 Symposium on Interactive 3D Graphics and Games, 29 April - 2 May, Seattle, USA, pp. 161-166.
  4. ISO/TC211. (2003), Geographic information - Spatial schema, ISO 19107:2003, International Organization for Standardization, https://www.iso.org/standard/26012.html?browse=tc, (last date accessed: 7, November, 2018)
  5. Jeong, H.M., Ryoo, H.G., and Li, K.J. (2018), InFactory: a RESTful API server for easily creating IndoorGML, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 29-31 August 2018, Dar es Salaam, Tanzania, pp. 77-84.
  6. Jun, C.H., Kang, J.H., Yeon, S.Y., Choi, H.G., Chung, T.Y., and Doh, N.J. (2017), Towards a realistic indoor world reconstruction: preliminary results for an object-oriented 3D RGB-D mapping, Intelligent Automation and Soft Computing, Vol. 23, No. 2, pp. 207-218. https://doi.org/10.1080/10798587.2016.1186890
  7. Kalvin, A.D. and Taylor, R.H. (1996), Superfaces: polygonal mesh simplification with bounded error. IEEE Computer Graphics and Applications, Vol. 16, No. 3, pp. 64-77. https://doi.org/10.1109/38.491187
  8. Kang, H.K. and Li, K.J. (2017), A standard indoor spatial data model - OGC IndoorGML and implementation approaches, ISPRS International Journal of Geo-Information, Vol. 6, No. 4, pp. 116-140. https://doi.org/10.3390/ijgi6040116
  9. Kruminaite, M. and Zlatanova, S. (2014), Indoor space subdivision for indoor navigation, The 6th ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, 4-7 November, Dallas/Fort Worth, TX, USA, pp. 25-31.
  10. OGC. (2012), OGC city geography markup language (CityGML) encoding standard, Open Geospatial Consortium, http://www.opengeospatial.org/standards/citygml, (last date accessed: 7, November, 2018)
  11. OGC. (2015), OGC IndoorGML, Open Geospatial Consortium, http://www.opengeospatial.org/standards/indoorgml, (last date accessed: 7, November, 2018)
  12. Ryoo, H.G., Kim, T.H., and Li, K.J. (2015), Comparison between two OGC standards for indoor space: CityGML and IndoorGML, The 7th ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, 3-6 November, Seattle, USA, pp. 1-9.
  13. Schroeder, W.J., Zarge, J.A., and Lorensen, W.E. (1992). Decimation of triangle meshes. ACM Siggraph Computer Graphics, Vol. 26, No. 2, ACM, pp. 65-70. https://doi.org/10.1145/142920.134010

Cited by

  1. 포인트 클라우드를 이용한 IndoorGML 데이터의 자동적 구축 vol.38, pp.6, 2020, https://doi.org/10.7848/ksgpc.2020.38.6.611