DOI QR코드

DOI QR Code

Landslide Susceptibility Assessment Using TPI-Slope Combination

TPI와 경사도 조합을 이용한 산사태 위험도 평가

  • Lee, Han Na (Industry-Academia Collaboration Foundation, Gangneung-Wonju National University) ;
  • Kim, Gihong (Dept. of Civil Engineering, Gangneung-Wonju National University)
  • Received : 2018.11.11
  • Accepted : 2018.12.18
  • Published : 2018.12.31

Abstract

TSI (TPI-Slope Index) which is the combination of TPI (Topographic Position Index) and slope was newly proposed for landslide and applied to a landslide susceptibility model. To do this, we first compared the TPIs with various scale factors and found that TPI350 was the best fit for the study area. TPI350 was combined with slope to create TSI. TSI was evaluated using logistic regression. The evaluation showed that TSI can be used as a landslide factor. Then a logistic regression model was developed to assess the landslide susceptibility by adding other topographic factors, geological factors, and forestial factors. For this, landslide-related factors that can be extracted from DEM (Digital Elevation Model), soil map, and forest type map were collected. We checked these factors and excluded those that were highly correlated with other factors or not significant. After these processes, 8 factors of TSI, elevation, slope length, slope aspect, effective soil depth, tree age, tree density, and tree type were selected to be entered into the regression analysis as independent variables. Three models through three variable selection methods of forward selection, backward elimination, and enter method were built and evaluated. Selected variables in the three models were slightly different, but in common, effective soil depth, tree density, and TSI was most significant.

TPI (Topographic Position Index)와 경사도를 조합하여 새로운 산사태 인자인 TSI (TPI-Slope Index)를 제안하고 산사태 예측모형에 적용하였다. 이를 위해, 먼저 다양한 분석 반경의 TPI를 서로 비교하여 TPI350이 연구 대상 지역에 가장 적합함을 알아내었고, 이를 경사도와 조합하여 TSI를 제작하였다. 본 논문에서 제안한 TSI의 적용성을 평가하기 위해 로지스틱 회귀분석을 이용한 결과, 산사태 예측 모형에 활용할 수 있다는 결론을 얻었다. 그 후, 기타 지형 정보들과 토양 및 임상 정보를 추가하여 산사태 위험도를 평가하는 로지스틱 회귀 모형을 제작하였다. 이를 위해 DEM (Digital Elevation Model), 토양도, 임상도로부터 추출할 수 있는 산사태 관련 인자들을 수집하고 이들을 검토하여 다른 인자와 상관도가 높거나 산사태와의 연관성이 낮은 인자들은 우선 제외하였다. 그 결과, TSI, 고도, 사면 길이, 경사향, 유효 토심, 영급, 나무 밀도, 임상 등 8개의 인자가 선정되어 회귀분석에 독립변수로 입력되었다. 변수의 입력 방법(전진 선택법, 후진 제거법, 직접 선택법)에 따라 3가지 모형을 생성하였고, 이들에 대한 평가를 수행하였다. 세 모형에서 선택된 변수는 조금씩 다르지만, 공통적으로 유효 토심, 나무 밀도, TSI 인자의 중요도가 높은 것으로 나타났다.

Keywords

GCRHBD_2018_v36n6_507_f0001.png 이미지

Fig. 1. Study area and landslide/non-landslide points

GCRHBD_2018_v36n6_507_f0002.png 이미지

Fig. 2. Flow chart

GCRHBD_2018_v36n6_507_f0003.png 이미지

Fig. 3. -2Lnℒ of each logistic regression model

GCRHBD_2018_v36n6_507_f0004.png 이미지

Fig. 4. Variation of slope, TPI350, and elevation at a slope

GCRHBD_2018_v36n6_507_f0005.png 이미지

Fig. 5. Distribution of landslide/non-landslide points in slope-TPI350 plane and TSI

GCRHBD_2018_v36n6_507_f0006.png 이미지

Fig. 6. Geological factors - Subsoil texture and soil type

GCRHBD_2018_v36n6_507_f0007.png 이미지

Fig. 7. Geological factors - Subsoil gravel content and soil structure

GCRHBD_2018_v36n6_507_f0008.png 이미지

Fig. 8. Geological factors – Soil series, effective soil depth, parent material, topsoil texture, and drainage

GCRHBD_2018_v36n6_507_f0009.png 이미지

Fig. 9. Forestial factors

Table 1. TPI classification

GCRHBD_2018_v36n6_507_t0001.png 이미지

Table 2. Evaluation of the factors: TPI350, slope, and TSI

GCRHBD_2018_v36n6_507_t0002.png 이미지

Table 3. Evaluation of topographic factors

GCRHBD_2018_v36n6_507_t0003.png 이미지

Table 4. Evaluation of geological factors

GCRHBD_2018_v36n6_507_t0004.png 이미지

Table 6. Performance of 3 logistic regression models

GCRHBD_2018_v36n6_507_t0005.png 이미지

Table 5. Evaluation of forestial factors

GCRHBD_2018_v36n6_507_t0006.png 이미지

References

  1. Akaike, H. (1973), Information theory and an extension of the maximum likelihood principle, Proceedings of the second International Symposium on Information Theory, Akademiai Kiado, 2-8 September, Tsahkadsor, Armenia, pp. 267-281.
  2. Chae, B.G., Kim, W.Y., Cho, Y.C., Kim, K.S., Lee, C.O., and Choi, Y.S. (2004), Development of a logistic regression model for probabilistic prediction of debris Flow, The Journal of Engineering Geology, Vol. 14, NO. 2, pp. 211-222. (in Korean with English abstract)
  3. Costanzo, D., Chacon, J., Conoscenti, C., Irigaray, C., and Rotigliano, E. (2014), Forward logistic regression for earth-flow landslide susceptibility assessment in the Platani river basin(southern Sicily, Italy), Landslides, Vol. 11, No.4, pp. 639-653. https://doi.org/10.1007/s10346-013-0415-3
  4. Guisan, A., Weiss, S.B., and Weiss, A.D. (1999), GLM versus CCA spatial modeling of plant species distribution, Plant Ecology, Vol. 143, No.1, pp. 107-122. https://doi.org/10.1023/A:1009841519580
  5. Hong, S. (2005), Binary and Multinomial Logistic Regression, Kyoyookgwahaksa, Korea.
  6. Hosmer, D.W. and Lemeshow, S. (2000), Applied Logistic Regression, Wiley, New York.
  7. Jang, K., Song, J., Park, K., and Chung, J. (2009), An objective procedure to decide the scale factors for applying land-form classification methodology using TPI, Journal of Korean Forest Society, Vol. 98, No. 6, pp. 639-645. (in Korean with English abstract)
  8. Lee, H. and Kim, G. (2012), Landslide risk assessment in Inje using logistic regression model, Korean Journal of Geomatics, Vol. 30, No. 3, pp. 313-321.(in Korean with English abstract) https://doi.org/10.7848/ksgpc.2012.30.3.313
  9. Lee, S., Jeong, G., and Park, S.J. (2015), Evaluating geomorphological classification system to predict the occurrence of landslides in mountainous region, Journal of the Korean Geographical Society, Vol. 53, No. 4, pp. 485-503. (in Korean with English abstract)
  10. Lee, Y.J., Park, G.A., and Kim, S.J. (2006), Analysis of landslide hazard area using logistic regression analysis and AHP approach, Journal of the Korean Society of Civil Engineers, Vol. 26, No. 5, pp. 861-867. (in Korean with English abstract)
  11. Othman, A.A., Gloaguen, R., Andreani, L., and Rahnama, M. (2015), Landslide susceptibility mapping in Mawat area, Kurdistan Region, NE Iraq: A comparison of different statistical models, Natural Hazards and Earth System Sciences discuss, Vol. 3, pp. 1789-1833. https://doi.org/10.5194/nhessd-3-1789-2015
  12. Raftery, A.E. (1995), Bayesian model selection in social research, Sociological Methodology, Vol. 25, pp. 111-163. https://doi.org/10.2307/271063
  13. Weiss, A.D. (2001), Topographic position and landforms analysis, Annual ESRI International User Conference, 9-13 July, San Diego, CA, pp. 9-13
  14. Woo, C.S., Lee, C.W., and Jeong Y. (2008), Study on application of topographic position index for prediction of the landslide occurrence, Journal of Korean Environmental Restoration Technology, Vol. 11, No. 2, pp. 1-9. (in Korean with English abstract)