DOI QR코드

DOI QR Code

A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars

소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구

  • Received : 2018.08.07
  • Accepted : 2018.09.17
  • Published : 2018.11.30

Abstract

A quantitative risk assessment method for quantitatively evaluating the fire risk in designing a road tunnel disaster prevention facilities has been introduced to evaluate the appropriateness of a disaster prevention facility in a large tunnel through which all vehicle types pass. However, since the quantitative risk assessment method of the developed can be applied only to the large sectional area tunnels (large tunnels), it is necessary to develop a quantitative risk assessment method for road tunnels passing only small cars which has recently been constructed or planned. In this study, fire accidents scenarios and quantitative risk assesment method for small road tunnels through small cars only which is based on the methods for existing road tunnels (large tunnels). And the risk according to the distance between cross passage is evaluated. As a result, in order to satisfy the societal risk assessment criteria, the distance of the appropriate distance between cross passages was estimated to be 200 m, and the effect of the ventilation system of the large port exhaust ventilation system was quantitatively analyzed by comparing the longitudinal ventilation system.

도로터널의 방재시설 설계에 화재 위험을 정량적으로 평가하기 위한 정량적 위험도 평가기법이 소방시설물에 대한 성능위주 설계의 일환으로 도입되어 전차종이 통과하는 대단면 터널에 대한 방재시설의 적정성을 평가하는데 활용되고 있다. 그러나 현재 도로 터널에 도입하고 있는 정량적 위험도 평가기법은 대단면 터널에만 적용이 가능하기 때문에 최근 건설이나 계획이 증가하는 소형차 전용 도로터널에 대한 정량적 위험도 평가기법의 개발 필요성이 대두되게 되었다. 이에 본 연구에서는 기존의 터널에 대한 정량적 위험도 평가기법을 기반으로 하여 소형차 전용 도로터널에 적합한 화재발생 시나리오를 제시하고 소형차 전용의 모델터널에 대해서 피난연결통로 간격에 따른 위험도를 분석하고 적용성을 검토하였다. 그 결과로 소형차 전용도로터널의 경우, 현행 사회적 위험도 평가기준을 만족하기 위한 피난연결통로의 적정 간격은 200 m로 평가되었다. 또한 소형차 전용터널에 대한 제배연방식에 따른 위험도를 비교한 결과, 제트팬에 의해서 기류제어가 가능한 대배기구방식이 피난안전확보에 효과적인 것으로 분석되었다.

Keywords

TNTNB3_2018_v20n6_917_f0001.png 이미지

Fig. 1. Risk assessment

TNTNB3_2018_v20n6_917_f0002.png 이미지

Fig. 2 Fire scenario for road tunnel only small car

TNTNB3_2018_v20n6_917_f0003.png 이미지

Fig. 3. Societal risk criteria for countries

TNTNB3_2018_v20n6_917_f0004.png 이미지

Fig. 4. Accident rate and frequency, return year according to scenario

TNTNB3_2018_v20n6_917_f0005.png 이미지

Fig. 5. Societal risk assessment by distance between cross passage

TNTNB3_2018_v20n6_917_f0006.png 이미지

Fig. 6. Optimal distance between cross passage according to tunnel length

TNTNB3_2018_v20n6_917_f0007.png 이미지

Fig. 7. Risk comparison according to ventilation method

Table 1. Fire accidents rate for each vehicle

TNTNB3_2018_v20n6_917_t0001.png 이미지

Table 2. Equivalent fatalities

TNTNB3_2018_v20n6_917_t0002.png 이미지

Table 3. Expected value for each nation

TNTNB3_2018_v20n6_917_t0003.png 이미지

Table 4. Model tunnel specification

TNTNB3_2018_v20n6_917_t0004.png 이미지

Table 5. Traffics for model tunnel

TNTNB3_2018_v20n6_917_t0005.png 이미지

Table 6. EV & IR according to interval between cross passages (tunnel length: 5000 m, slope: 1%)

TNTNB3_2018_v20n6_917_t0006.png 이미지

Table 7. EV according to interval between cross passages (tunnel length: 5000 m, slope: 1%)

TNTNB3_2018_v20n6_917_t0007.png 이미지

Table 7. Risk (EV and IR) comparison according to ventilation method (tunnel length: 5000 m, slope: 1%)

TNTNB3_2018_v20n6_917_t0008.png 이미지

References

  1. Japan Road Association (2002), Road Tunnel Emergency Facility Installation Criteria.Commentary, Tokyo, Japan.
  2. Kohl, B., Botschek, K., Horhan, R. (2006), "Austrian risk analysis for road tunnels development of a new method for the risk assessment of road tunnels", Proceedings of the 3rd International Conference "Tunnel Safety and Ventilation", Graz, pp. 204-211.
  3. Korea Transportation Safety Authority (2016), 2016 vehicle mileage statistics, Gimcheon, Korea.
  4. Mattias, P. (2002), "Quantitative risk analysis procedure for the fire evacuation of a road tunnel-anillustrative example", Division of Fire Safety Engineering, Lund University, Master's Degree, Sweden.
  5. Meng, Q., Xiaobo, Q. (2010), "Quantitative risk assessment model for fire in road tunnels with parameter uncertainty", Proceedings of the 4th International Workshop of Reliable Engineering Computing, 10 Kent Ridge Crescent, Singapore, pp. 751-764.
  6. Ministry of Land, Infrastructure and Transport (2015), Guidelines for installing and managing road tunnel emergency facilities, Sejong, Korea.
  7. National Fire Data System (2017), E-Fire statistics, http://www.nfds.go.kr/rdpage.jsf, National Fire Agency.
  8. Official Journal of the European Union (2004), "Directive 2004/54/EC of the European Parliament and of the Council of 29 April 2004 on minimum safety requirements for tunnels in the trans-European road network", L201/76, pp. 56-76.
  9. Palsson, I. (2004), Risk management in hvalfjorour tunnel, department of fire safety engineering, Lund University, Sweden.
  10. Philippe CASSINI (2010), Brief overview of the DG-QRAM, PIARC, PARIS.
  11. PIARC (1995), Road safety in tunnels, PIARC committee on road tunnels, France.
  12. Purser (1988), "Toxicity assesment of the combustion products", the SFPE Handbook of Fire protection Eng. National Fire Protection Association, Quincy, Massachusetts, USA.
  13. Speitel, L.C. (1995), Toxicity assessment of combustion gases and development of a survival model, Federal Aviation Administration, Virginia, USA.
  14. Weger, D.D., Kruiskamp, M.M., Hoeksma, J. (2001), "Road tunnel risk assessment in the Netherlands TUNprim: A spreadsheet model for the calculation of the risks in road tunnels", Proceedings of the ESREL 2001, International Conference, Torino, Italy, pp. 16-20.
  15. Yoo, J. (2006), "Method and program for the quantitative risk assessment of the road tunnel", Proceedings of the 2006 Ventilation Sector Academic Lecture, The Society Of Air-Conditioning And Refrigerating Engineers of Korea, pp. 89-103.