• Title/Summary/Keyword: 피난연결통로간격

Search Result 6, Processing Time 0.016 seconds

Installation Standards of Urban Deep Road Tunnel Fire Safety Facilities (도심부 대심도 터널의 방재시설 설치 기준에 관한 연구(부산 승학터널 사례를 중심으로))

  • Lee, Soobeom;Kim, JeongHyun;Kim, Jungsik;Kim, Dohoon;Lim, Joonbum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.727-736
    • /
    • 2021
  • Road tunnel lengths are increasing. Some 1,300 tunnels with 1,102 km in length had been increased till 2019 from 2010. There are 64 tunnels over 3,000 m in length, with their total length adding up to 276.7 km. Safety facilities in the event of a tunnel fire are critical so as to prevent large-scale casualties. Standards for installing disaster prevention facilities are being proposed based on the guidelines of the Ministry of Land, Infrastructure and Transport, but they may be limited to deep underground tunnels. This study was undertaken to provide guidelines for the spacing of evacuation connection passages and the widths of evacuation connection doors. Evacuation with various spacing and widths was simulated in regards to evacuation time, which is the measure of safety, using the evacuation analysis simulation software EXODUS Ver.6.3 and the fire/smoke analysis software SMARTFIRE Ver.4.1. Evacuation connection gates with widths of 0.9 m and 1.2 m, and spacings of 150 m to 250 m, were set to every 20 m. In addition, longitudinal slopes of 6 % and 0 % were considered. It was determined to be safe when the evacuation completion time was shorter than the delay diffusion time. According to the simulation results, all occupants could complete evacuation before smoke spread regardless of the width of the evacuation connection door when the longitudinal slope was 6 % and the interval of evacuation connection passage was 150 m. When the evacuation connection passage spacing was 200 m and the evacuation connection gate width was 1.2 m, all occupants could evacuate when the longitudinal slope was 0 %. Due to difference in evacuation speed according to the longitudinal slope, the evacuation time with a 6 % slope was 114 seconds shorter (with the 190 m connection passage) than with a 0 % slope. A shorter spacing of evacuation connection passages may reduce the evacuation time, but this is difficult to implement in practice because of economic and structural limitations. If the width of the evacuation junction is 1.2 m, occupants could evacuate faster than with a 0.9 m width. When the width of a connection door is 1.2 m with appropriate connection passage spacing, it might provide a means to increase economic efficiency and resolve structural limitations while securing evacuation safety.

The study on interval calculation of cross passage in undersea tunnel by quantitative risk assesment method (해저철도터널(목포-제주간) 화재시 정량적 위험도 평가기법에 의한 피난연결통로 적정간격산정에 관한 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rie, Dong-Ho;Shin, Hyun-Jun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • Quantitative Mokpo-Jeju undersea tunnel is currently on the basis plan for reviewing validation. As for the cross section shape for express boat of 105 km line, sing track two tube is being reviewed as the Euro tunnel equipped with service tunnel. Also, 10 carriage trains have been planned to operate 76 times for one way a day. So, in this study, quantitative risk assessment method is settled, which is intended to review the optimal space between evacuation connection hall of tunnel by quantitative risk analysis method. In addition to this, optimal evacuation connection hall space is calculated by the types of cross section, which are Type 3 (double track single tube), Type 1 (sing track two tube), and Type 2 (separating double track on tube with partition). As a result, cross section of Type 2 is most efficient for securing evacuation safety, and the evacuation connection space is required for 350 m in Type 1, 400 m in Type 2, and 1,500 m in Type3 to satisfy current domestic social risk assessment standard.

Effects of evacuation delay time and fire growth curve on quantitative risk for railway tunnel fire (철도터널 화재 시 피난개시시간지연 및 화재성장곡선이 정량적 위험도에 미치는 영향)

  • Ryu, Ji-Oh;Kim, Hyo-Gyu;Lee, Hoo-Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.5
    • /
    • pp.809-822
    • /
    • 2018
  • A quantitative risk assessment has been introduced to quantitatively evaluate fire risk as a means of performance based fire protection design in the design of railway tunnel disaster prevention facilities. However, there are insufficient studies to examine the effect of various risk factors on the risk. Therefore, in this study, the risk assessment was conducted on the model tunnel in order to examine the effects of the evacuation start time delay and the fire growth curve on the quantitative risk assessment. As a result of the analysis of the scenario, the fatalities occurred mainly when escapes in the same direction as the direction of the fire smoke movement. In addition, after the FED exceeded 0.3, the maximum fatalities occurred within 10 minutes. In the range of relatively low risk, distance between cross passages, evacuation delay time and fire growth curve were found to affect the risk, but they were found to have little effect on the condition that the risk reached the limit. Especially, in this study, it was evaluated that the evacuation delay time reduction, fire intensity and duration reduction effect were not observed when the distance between cross passages was more than 1500 m.

A study on the development and applicability of fire risk assessment method for small road tunnels passing only small cars (소형차 전용 도로터널의 화재 위험도 평가기법개발 및 적용성에 관한 연구)

  • Ryu, Ji-Oh;Choi, Pan-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.917-930
    • /
    • 2018
  • A quantitative risk assessment method for quantitatively evaluating the fire risk in designing a road tunnel disaster prevention facilities has been introduced to evaluate the appropriateness of a disaster prevention facility in a large tunnel through which all vehicle types pass. However, since the quantitative risk assessment method of the developed can be applied only to the large sectional area tunnels (large tunnels), it is necessary to develop a quantitative risk assessment method for road tunnels passing only small cars which has recently been constructed or planned. In this study, fire accidents scenarios and quantitative risk assesment method for small road tunnels through small cars only which is based on the methods for existing road tunnels (large tunnels). And the risk according to the distance between cross passage is evaluated. As a result, in order to satisfy the societal risk assessment criteria, the distance of the appropriate distance between cross passages was estimated to be 200 m, and the effect of the ventilation system of the large port exhaust ventilation system was quantitatively analyzed by comparing the longitudinal ventilation system.

A numerical study on the performance of the smoke exhaust system according to the smoke exhaust method in emergency station for railway tunnel (철도터널 구난역의 제연방식에 따른 제연성능에 관한 수치 해석적 연구)

  • Ryu, Ji-Oh;Kim, Jin-Su;Seo, Jong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.845-856
    • /
    • 2017
  • In the long railway tunnel, in order to secure safety in case of fire, it is required a emergency station. However, there is no standard or research results on smoke exhaust method and exhaust flow rate in emergency station, so it is necessary to study the smoke exhaust system for emergency station. In this study, we are created a numerical analysis model for emergency station where the evacuation cross passage connected to the service tunnel or the relative tunnel was installed at regular intervals (40 m intervals). And the fire analysis are carried out by varying the fire intensity (15, 30MW), the smoke exhaust method (only air supply, forced air supply and exhaust, forced air exhaust only), and the air flow rate (7, 14, $40m^3/s$). From the results of fire analysis, temperature and CO concentration are analyzed and ASET based on the limit temperature are compared at various condition. As a result, in the case with fire intensity of 15 MW, it is shown that a sufficiently safe evacuation environment can be ensured by applying forced air supply and exhaust method or forced air exhaust only method when the air flow rate is $7m^3/s$ above. In case of fire intensity of 30 MW, it is impossible to maintain the safety evacuation environment for more than 900 seconds when the exhaust air volume is below $14m^3/s$. And when the air flow rate is $40m^3/s$, the exhaust port is disposed at the side portion of the upper duct, which is most advantageous for securing the temperature-based safety.

A Study on the Effective Fire and Smoke Control in Semi-Transverse Ventilation (균일배기 환기방식에서의 배연특성에 관한 연구)

  • Jeon, Yong-Han;Kim, Jong-Yoon;Seo, Young-Ho;Yoo, Oh-Ji;Han, Sang-Pil
    • Fire Science and Engineering
    • /
    • v.24 no.1
    • /
    • pp.90-94
    • /
    • 2010
  • In this study it is intended to review the moving characteristics of smoke by performing visualization simulation for the calculation of the optimal smoke exhaust air volume in case a fire occurs in tunnels where transverse ventilation is applied, and to obtain basic data necessary for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions under various conditions. As a result of this study, if it was assumed 0 critical velocity in the tunnel, the smoke exhaust air volume was limited within 250 meter in the road-tunnel disaster prevention indicator and the exhaust efficiency was from 55.1% to 95.8% in the result of this study. If the wind velocity is in the tunnel, the exhaust rate intends to increase rapidly and the exhaust efficiency is decreased. In addition, if the wind velocity is increased, the exhaust rate should be increased in compared with the generation rate of smoke in maximum 1.8 or 1.04 times. In this study, when the wind velocity is in the tunnel, the limited exhaust rate is $84m^3/s{\cdot}250m$. And if it was assumed 1.75 m/s critical velocity in the tunnel, the exhaust rate would be defined $393m^3/s{\cdot}250m$($Q_E$ = 80 + 5Ar).