• Title/Summary/Keyword: 강성 지오그리드

Search Result 29, Processing Time 0.023 seconds

국부적 강성 증가를 고려한 지오그리드-보강기층 모델링

  • 변용훈
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.35-41
    • /
    • 2024
  • 측면구속은 지오그리드에서 골재 입자의 상호결합과 관련된 주요 보강 메커니즘으로 알려져 있다. 본 연구에서는 실내실험을 통해 얻은 지오그리드-골재 상호결합에 의한 국부적 강성증가에 대한 결과를 토대로, 지오그리드로 보강된 기층을 포함한 포장구조체의 탄성 반응 특성을 파악하고자 하였다. 기존의 실험적 연구에서는 지오그리드 배치된 시편 중간 높이로부터 거리가 멀어질수록 전단파 측정에서 추정된 전단탄성계수가 감소한다는 것을 보여주었다. 또한, 삼각형 지오그리드 근처의 강성 증가가 사각형 지오그리드 근처보다 크게 나타났다. 이러한 전단탄성계수 주상도를 기반으로, 수치해석적 연구에서는 기층의 4 개 하부층에 대한 탄성계수 값을 다르게 할당되었다. 층상 탄성해석 프로그램을 사용한 수치해석적 연구는 아스팔트층 하단에서 두 지오그리드 보강 포장시나리오의 수평방향 인장 응력과 변형이 미보강된 시나리오에 비해 감소했음을 보여주었다. 기층 중간깊이에서는 지오그리드 보강 포장시나리오의 압축응력이 미보강된 시나리오에 비해 보다 크게 나타났으며, 지오그리드 보강구간의 인장변형은 미보강된 구간보다 작게 나타났다. 삼각형 및 사각형 지오그리드의 사용은 기층 중간깊이에서 미보강된 시나리오에 비해 수직압축응력을 증가시키고 수직압축변형을 감소시켰다. 노상 상단에서는 지오그리드 보강 포장 구간의 수직 응력과 변형이 미보강된 구간보다 작았는데, 이는 노상의 침하 가능성이 낮다는 것을 보여주었다. 따라서, 지오그리드와 골재 간 미세역학적 상호결합을 기반으로 한 거시적 모델링 방법은 지오그리드로 보강된 아스팔트포장시스템의 역학적 분석에 효과적으로 사용될 수 있을 것으로 기대된다.

  • PDF

Load Carrying Capacity of Geogrid-Encased Stone Columns in Soft Ground (연약지반에 시공되는 지오그리드 감쌈 스톤컬럼의 하중지지 특성)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.4
    • /
    • pp.25-36
    • /
    • 2008
  • This paper presents the results of numerical investigation on support mechanism of geogrid-encased stone columns for use in soft ground. A number of cases were analyzed using a axial-and 3D stress-pore pressure coupled model that can effectively model construction sequence and drainage as well as reinforcing effects of geogrid-encased stone columns. The results indicated that the geogrid encasement tends to significantly improve the load carrying of a stone column. Also revealed was that such a confinement effect depends on encasement length and stiffness of geogrid. It is also shown that there exist critical encasement length and stiffness of geogrid for a given condition.

  • PDF

Dispersing Stress under Geogrid-Mattress Foundation (지오그리드 매트리스기호의 전파듣력에 관한 연구)

  • Ju, Jae-U;Jang, Yong-Chae;Park, Jong-Beom
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.117-128
    • /
    • 1998
  • Solid mattress foundation using geogrid has often been used on soft grounds to increase the bearing capacity, and its effect has received much recognition. Geogrid-mattress system is the method of construction which increases the bearing capacity and the effect of controlling settlement by dispersing load to wider foundation through its stiffness. But ifs mechanism has not been examined exactly yet. considered to be influential factors in the experiments. As a result of the experiments, the characteristic of dispersing stress under mattress foundations was understood and the way of calculating the bearing capacity in designing the mattress foundations was suggested.

  • PDF

Investigation on Support Mechanism of Geogrid-Encased Stone Columns in Soft Ground (연약지반에 시공되는 지오그리드 감쌈 스톤컬럼의 하중 지지 메카니즘에 관한 연구)

  • Yoo, Chung-Sik;Kim, Sun-Bin
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.93-101
    • /
    • 2008
  • This paper presents the results of numerical investigation on support mechanism of geogrid-encased stone columns for use in soft ground improvement. A number of cases were analyzed using a 3D stress-pore pressure coupled model that can effectively model construction sequence and drainage as well as reinforcing effects of geogrid-encased stone columns. The results indicated that the geogrid encasement provides additional confinement effect that reduces vertical stress in the soft ground, thus resulting in less excess pore water pressures and associated settlement. Also revealed was that such a confinement effect depends on encasement length and stiffness of geogrid. It is also shown that there exist critical encasement length and stiffness of geogrid for a given condition.

Short- and Long-term Load Carrying Capacity of Geogrid-encased Stone Column - A numerical investigation (지오그리드 감쌈 쇄석기둥 공법의 장.단기 하중 지지 특성 - 유한요소해석을 통한 고찰)

  • Lee, Dae-Young;Song, Ah-Ran;Kim, Sun-Bin;Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.8
    • /
    • pp.5-16
    • /
    • 2007
  • The stone column method is widely used in Europe as an alternative to conventional pile foundations. Several benefits of using the stone column method include sound performance, low cost, expediency of construction, and liquefaction resistance among others. Recently, geosynthetic-encased stone column approach has been developed to improve its load carrying capacity through increasing confinement effect. Although such a concept has been successfully applied in practice, fundamentals of the method have not been fully explored. This paper presents the results of an investigation on the load carrying capacity of geogrid-encased stone column using a series of 2D finite element analyses. A parametric study was then conducted for influencing factors such as effect of geogrid encasement, encasement length, geogrid strength, among others. The results of the analyses indicated improved short- and long-term load carrying capacity of the geogrid-encased stone column method has advantages over the conventional stone column method without encasing.

Settlement Reduction Effect of the Geogrid Reinforced Stone Column System (고강도 지오그리드로 보강된 Stone Column 공법의 침하감소효과)

  • Park, Sis-Am;Cho, Sung-Han;Yoo, Chung-Sik;Lee, Dae-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.1
    • /
    • pp.15-23
    • /
    • 2006
  • Sand Compaction Pile and Stone Column method have been used in widely during several decades as a technique to reinforce soft soils and increasing ultimate bearing capacity, accelerate consolidation settlement of the foundation ground. Stone column method, making a compaction pile using crushed stone, is a soft ground improvement method. However, stone column method is difficult to apply to the ground which is not mobilized enough lateral confine pressure because no bulging failure resistance. Hence, in present study, development the geogrid reinforced stone column system for settlement reduction and wide range of application of stone columns. To develop this system, triaxial compression tests were conducted for evaluation which is about behavior characteristics of stone column on replacement rate and confine pressure. Then, 3-dimensional numerical analysis were evaluated for application of the GRSC (geogrid reinforced stone column) system as evaluate behavior characteristics and settlement reduction effect of stone column reinforced by geogrid on types and reinforcing depth change of geogrid.

  • PDF

Reinforcement Effectiveness and Arching Effect of Geogrid-Reinforced and Pile-Supported Roadway Embankment (지오그리드로 보강된 성토지지말뚝의 보강 및 아칭효과분석)

  • Shin, Eun Chul;Oh, Young In;Lee, Dong Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.11-18
    • /
    • 2005
  • A pilot scale filed model test and 2-D numerical analysis was conducted to evaluate the effectiveness of constructing a geogrid-reinforced and pile-supported embankment system over soft ground to reduce differential settlement, and the results are presented hearin. Three-by-three pile groups with varying the space between pile were driven into a layer of soft marine clay and a layer of geogrid was used as reinforcement over each pile group. 2-D numerical analysis has been conducted by using the FLAC-2D(Fast Lagrangian Analysis of Continua) program for same condition of field model test. The settlement, vertical stress, and strain of geogrid due to the construction of embankment were measured at various locations. Based on the field model test and numerical analysis results, pile reinforcement generated the soil arching at the midspan of pile cap and the geogrid reinforcement helps reduce the differential settlement of the soft ground by tensile strength of geogrid. Also for $D/b{\geq}6.0$, the effectiveness of geogrid reinforcement in reducing settlement is negligible.

  • PDF

Friction Characteristics of Geogrid -Light Weight Soil Mixed with Small Pieces of Waste EPS (지오그리드-폐 EPS조각 혼합경량토의 마찰특성)

  • 김홍택;방윤경
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.163-184
    • /
    • 1996
  • In this study, physical and geotechnical properties of the light weight mixed soil( weathered granite soil mixed with small pieces of waste EPS) were analyzed by laboratory experiments to examine its suitability for backfill materials of the reinforced-earth walls. Friction characteristics of geogrid-light weight sized soil were also investigated by performing the pullout tests for two types of geogrids having different flexural rigidity. Also a procedure was proposed to evaluate friction strength between geogrid and light weight miffed soil by using a stress-strain relationship of the orthotropic composite material subjected to both longitudinal and vertical loadings. By the procedure proposed in this study, values of the calibration coefficients ul and uf applicable for the evaluation of friction strengths between two types of geogrids and light weight mixed soils were further presented.

  • PDF

Pullout Characteristics of Waste Fishing Net Reinforced Bottom Ash using Pullout Test (인발시험에 의한 저회에 보강된 폐어망의 인발특성 연구)

  • Kwon, Soon-Jang;Kim, Yun-Tae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.57-66
    • /
    • 2013
  • In this study, pullout tests were carried out to evaluate pullout characteristics of waste fishing net (WFN), which added into bottom ash for recycling both bottom ash and WFN. Three different mesh size of WFN (WFN20:$20mm{\times}20mm$, WFN30:$30mm{\times}30mm$, WFN40:$40mm{\times}40mm$) and geogrid were added as a reinforcement. Pullout characteristics of waste fishing net were compared with those of the geogrid. Pullout test results showed that pullout strength and stiffness of WFN20 are a little less than those of geogrid. However, the pullout friction angle of WFN20 is similar to that of geogrid due to bearing resistance induced from transverse rib because thickness of WFN20 is greater than geogrid. Pullout test results also indicated that distribution of residual strain along reinforcement after test depends on overburden stress. Residual strain at the tip of reinforcement increased with an increase in overburden stress due to concentration of pullout force on the tip of reinforcement.

Load Carrying Capacity of Geosynthetic-Reinforced Stone Column in Cohesionless Ground (사질토 지반에 시공되는 지오그리드 보강 쇄석말뚝의 지지력 거동특성)

  • Yoo, Chung-Sik;Song, Ah-Ran;Kim, Sun-Bin;Lee, Dae-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.15-27
    • /
    • 2007
  • This paper deals with the bearing capacity behaviour of geosynthetic-reinforced stone column(GRSC) constructed in soft ground, as part of an investigation regarding the applicability of GRSC in Korea. In this study, two-dimensional finite element analyses were performed to investigate the effect of relevant design factors on the bearing capacity behaviour. The parametric study is performed for various influencing factors. The results indicated that the geogrid encasement tends to significantly improve the load carrying capacity of a stone column. Also found were that the geogrid encasement length and its stiffness significantly affect the load carrying capacity behaviour of GRSC, and that the encasement length of three times the stone column diameter is sufficient in mobilizing the full reinforcement effect. Practical implications of the findings are discussed.