DOI QR코드

DOI QR Code

A study of growth inhibition mechanism of vinegar drink on Candida albicans

식초음료의 Candida albicans에 대한 성장억제 기전에 관한 연구

  • Kim, Ae-Ok (Department of Preventive &Public Health Dentistry, Chonnam National University School of Dentistry) ;
  • Choi, Choong-Ho (Department of Preventive &Public Health Dentistry, Chonnam National University School of Dentistry) ;
  • Hong, Suk-Jin (Department of Preventive &Public Health Dentistry, Chonnam National University School of Dentistry)
  • 김애옥 (전남대학교 치의학전문대학원 예방치과학교실) ;
  • 최충호 (전남대학교 치의학전문대학원 예방치과학교실) ;
  • 홍석진 (전남대학교 치의학전문대학원 예방치과학교실)
  • Received : 2018.11.01
  • Accepted : 2018.12.28
  • Published : 2018.12.28

Abstract

The purpose of this study was to investigate the antifungal inhibition mechanism of fruit vinegar drinks against Candida albicans. To evaluate the effect of vinegar drinks on the growth and morphological changes of C. albicans, we performed real-time PCR and phase contrast microscopy. All the groups added vinegar drink showed the inhibitory effect of C. albicans on growth compared to the control. The expression of genes ALS3, ECE1, HWP1, and Sap5 were decreased by vinegar drink. As a result of phase contrast microscopy, the group to which vinegar drink was added showed significant quantitative decrease, morphological change and inhibition of C. albicans. This study can be provided as basic data for the development of antibiotics by verifying the antifungal activity of vinegar drinks.

이 연구는 Candida albicans에 대한 과일식초음료의 항진균 억제 기전에 관하여 알아보고자 하였다. 식초음료가 C. albicans의 성장, 유전자 억제와 형태 변화에 미치는 영향을 평가하기 위하여 위상차현미경, Real-Time PCR 등을 시행하여 평가하였다. C. albicans의 생장력 검사 결과 식초 음료 첨가시 모두 성장이 억제되는 결과를 보였다. 또한 ALS3, ECE1, HWP1, Sap5의 발현 수준을 측정한 결과 식초 음료를 첨가한 경우 유전자 발현이 모두 감소되었다. 위상차 현미경으로 검사한 결과, 식초 음료를 첨가한 그룹은 C. albicans의 현저한 양적 감소, 형태학적 변화 및 억제를 보였다. 이 연구 결과는 식초 음료에 항진균 활성을 나타내는 성분이 있으며 구강 건강을 위한 항진균제 개발의 기초 자료로 사용될 수 있음을 시사한다.

Keywords

OHHGBW_2018_v9n12_137_f0001.png 이미지

Fig. 1. Effect of vinegar drink on the genes of C. albicans. The gene expressions of mRNA were evaluated via quantitative real time RT-PCR (normalized to house-keeping gene, ACT1).

OHHGBW_2018_v9n12_137_f0002.png 이미지

Fig. 2. Phase contrast microscope image (×400) of C. albicans after treatment for 24 hours (a: Control, b: NV 1.6 ㎖, c: NV 3 ㎖, d: V 1.6 ㎖)

OHHGBW_2018_v9n12_137_f0003.png 이미지

Fig. 3. Phase contrast microscope image (×400) of C. albicans after treatment for 48 hours (a: Control, b: NV 1.6 ㎖, c: NV 3 ㎖, d: V 1.6 ㎖)

Table 1. Primers Used for RT-PCR

OHHGBW_2018_v9n12_137_t0001.png 이미지

Table 2. The organic acid compositions of natural fermented vinegar products

OHHGBW_2018_v9n12_137_t0002.png 이미지

Table 3. Optical density according to incubating time of C. albicans

OHHGBW_2018_v9n12_137_t0003.png 이미지

References

  1. Na L et al. (2016). Vinegar decreases blood pressure by down-regulating AT1R expre- ssion via the AMPK/PGC-$1{\alpha}$/$PPAR{\gamma}$ pathway in spontaneously hypertensive rats. Eur J Nutr, 55(3), 1245-1253. DOI : 10.1007/s00394-015-0937-7
  2. Yamashita H et al. (2009). Effects of acetate on lipid metabolism in muscles and adipose tissues of type 2 diabetic Otsuka Long-Evans Tokushima Fatty (OLETF) rats. Biosci Biotechnol Biochem, 73(3), 570-576. DOI : 10.1271/bbb.80634
  3. Badr Jabir H, Naeem Abbas F & Muhsin Khalaf R. (2011). In vitro assessment of antifungal potential of apple cider vinegar and acetic acid versus fluconazole in clinical isolates of otomycosis. Thi Qar Med J, 5(1), 126-133.
  4. Jafari AA, Falah-Tafti A, Lotfi-Kamran MH, Zahraeii A & Kazemi A. (2012). Vinegar as a removing agent of Candida albicans from acrylic resin plates. Jundishapur J Microbiol, 5(2), 388-392. DOI : 10.5812/jjm.2499
  5. S. J. Park, K. H. Han, J. Y. Park, S. J. Choi, K. H. Lee. (2014). Influence of bacterial presence on biofilm formation of Candida albicans. Yonsei Med J, 55(2), 449-458. DOI : 10.3349/ymj.2014.55.2.449.
  6. Y. J. Jeong & M. H. Lee. (2000). A view and prospect of vinegar industry. Food Ind Nutr, 5(1), 7-12.
  7. Miceli MH & Kauffman CA. (2015). Isavu- conazole: A New Broad-Spectrum Triazole Antifungal Agent. Clin Infect Dis, 61(10), 1558-1565. DOI: 10.1093/cid/civ571
  8. Whaley SG, Berkow EL, Rybak JM, Nishimoto AT, Barker KS & Rogers PD. (2017) Azole Antifungal Resistance in Candida albicans and Emerging Non- albicans Candida Species. Front Microbiol, 61(10), 1558-1565. DOI: 10.1016/S1473-3099(17)30316-X
  9. Perlin DS, Rautemaa-Richardson R, Alastruey-Izquierdo A. (2017) The global problem of antifungal resistance: prevalence, mechanisms, and management. Lancet Infect Dis, 17(12), 1578-1583.
  10. Y.J. Jeong, J. H. Seo, G. D. Lee, N. Y. Park & T. H. Choi. [1999] The quality comparison of apple vinegar by two stages fermentation with commercial apple vinegar. J Korean Soc Food Sci Nutr 28(2), 353-358.
  11. Y. M. Yang. (2009). Nutrition ingredient and flavor ingredient analysis of the vinegar which is in the process of marketing. Master's dissertation. Chonnam University, Gwangju.
  12. Makino SI, Cheun HI, Tabuchi H & Shirahata T. (2000). Antibacterial activity of chaff vinegar and practical application. JVMS, 62(8), 93-895. DOI : 10.1292/jvms.62.893
  13. Jagger DC, Huggett R & Harrison A. (1995). Cross-infection control in dental laboratories. Br Dent J, 179(3), 93-96. https://doi.org/10.1038/sj.bdj.4808846
  14. Shaymaa MH. (2018). The Effect of Apple Cider Vinegar (ACV) as an Antifungal in a Diabetic Patient (Type II Diabetes) with Intraoral Candidosis. Int J Dent & Oral Heal. 4(5), 54-57
  15. Arendorf TM & Walter DM. (1980) The prevalence and intra-oral distribution of Candida albicans in man. Archs oral Biol, 25(1), 1-10. https://doi.org/10.1016/0003-9969(80)90147-8
  16. Heilmann CJ et al. (2011). Hyphal induction in the human fungal pathogen Candida albicans reveals characteristic wall protein profile. Microbiology, 157(8), 2297-2307. DOI : 10.1099/mic.0.049395-0
  17. S. Kim et al. (2018) Release of trans- criptional repression through the HCR promoter region confers uniform expression of HWP1 on surfaces of Candida albicans germ tubes. PLoS One, 13(2), e0192260. DOI : 10.1371/journal.pone.0192260
  18. S. W. Kim, Y. J. JOO & J. Kim. (2010). Asc1p, a ribosomal protein, plays a pivotal role in cellular adhesion and virulence in Candida albicans. J Microbiol, 48(6), 842-848. DOI : 10.1007/s12275-010-0422-1
  19. Li, R, K, & Cutler JE. (1993). Chemical definition of an epitope/adhesin molecule on Candida albicans. J Biol Chem, 268(24), 18293-18299.