Fig. 1. Equivalent Circuit of the Induction Motor
Fig. 2. The explosion proof type's switch
Fig. 3. Block diagram of the PWM inverter system
Fig. 4. Switching wave of three phase PWM inverter
Fig. 5. PWM inverter load test
Fig. 7. The explosion proof type's inverter terminal
Fig. 6. Measure the 3-step wind mass with tachometer
Table 1. Maximum experimental safe gap according to the group of chemicals
Table 2. Strength of the motor container
Table 3. Define anti-explosion symbols
Table 4. Table of wind volume and speed test results for explosion proof fans
References
- S. Y. LEE. (1984). Classification and Structure of Explosion-proof Motor. Journal of Electrical World Monthly Magazine, 28-34.
- S. G. Yoon, J. H. Kim & Y. J. Kim. (2018). Optimal Design of Explosion-Proofed Actuator-Motor Assembly. The KSFM Journal of Fluid Machinery, 21(4), 17-23. https://doi.org/10.5293/kfma.2018.21.4.017
- D. J. Yoo, H. K. Lee & K. S Kim. (2010). A Study on the efficiency improvement about the explosion proof type's single phase motor for the lubricator pump. Proceedings of KSAE Autumn Conference, 2121-2123.
- J. H. Bae & J. W. Ahn. (2017). Design of exhauster system for high efficiency drive(I). Power Electronics Annual Conference, 7, 280-281.
- R. A. Strehlow & J. A. Nicholls, E. C. Magison & P. J. Schram. (1979). An Inverstigation of The Maximum Experimental Safe Gap Anomaly. Journal of Hazrdous Materials, 3, 1-15. https://doi.org/10.1016/0304-3894(79)85001-3
- S. Y. Wang, C. M. Lin, C. L. Tseng, J. H. Chou & B. L. Syu. (2016). Design of a fuzzy sliding-mode controller for induction motor vector control systems. Automatic Control Conference (CACS) 2016 International, 206-211.
- C. Attaianese, G. Tomasso, A. Damiano, i. Marogiu & A. Perfetto. (1999). A Novel Approach to Speed and Parameters Estimation in Induction Motor Drives. IEEE Transactions on Energy Conversion, 14(4), 939-945. https://doi.org/10.1109/60.815011
- N. A. Genesis, C. E. Emenike & I. O. Charles. (2017). A low cost method for generating constant volts per frequency control signals. Electro-Technology for National Development (NIGERCON) 2017 IEEE 3rd International Conference on, 994-999.
- M. H. Park & S. K. Sul. (1984). Microprocessor -Based Optimal-Efficiency Drive of an Induction Motor. Industrial Electronics IEEE Transactions on, IE-31(1), 69-73. https://doi.org/10.1109/TIE.1984.350023
- M. Varnovitsky. (1983). A Microcomputer- Based Control Signal Generator for a Three- Phase Switching Power Inverter. Industry Applications IEEE Transactions on, IA-19(2), 228-234. https://doi.org/10.1109/TIA.1983.4504186
- K. S. Rajashekara & J. Vithayathil. (1982). Microprocessor Based Sinusoidal PWM Inverter by DMA Transfer. Industrial Electronics IEEE Transactions on, IE-29(1), 46-51. https://doi.org/10.1109/TIE.1982.354132
- A. Munoz-Garcia, T. Lipo & D. Novotny. (1997). A new induction motor open-loop speed control capable of low frequency operation. IEEE Industry Applications Society. Annual Meeting.
- J. Ohnishi, H. Miyazaki & H. Okitsu. (1988). High Efficiency Drive of an Induction Motor by Means of V/F Ratio Control. in IECON, Tokushima.
- D. Lee & Y. Kim. (2007). Control of Single-Phase-to-Three-Phase AC/DC/AC/ PWM Converters for Induction Motor Drives. IEEE Transactions on Industrial Electronics, 54(2), 797-804. https://doi.org/10.1109/TIE.2007.891780
- B. S. Lee & Y. H. Kim. (2007). The Study of Determination to Equivalent Circuit Parameters for Single phase Induction Motor using MATLAB. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 21(1), 125-130. https://doi.org/10.5207/JIEIE.2007.21.1.125