DOI QR코드

DOI QR Code

A Study on the development of Explosion-proof type's the terminal box of the ventilator with the control of wind volume and operating time

풍량 및 운전시간 제어 방폭 배풍기 인버터 단자함 개발에 관한 연구

  • Yoo, DongJoo (School of Automobile Engineering, Ajou Motor College)
  • 유동주 (아주자동차대학 자동차계열)
  • Received : 2018.10.15
  • Accepted : 2018.12.20
  • Published : 2018.12.31

Abstract

This thesis is about the study of inverter terminal boxes in a explosion proof type exhaust fan that can control wind volume and operating time. In Korea, there is no ventilator to adjust the amount of wind and operating time when working in poor conditions. The purpose of the project is to create a explosion terminal box that can control the operating time and wind speed of a suitable explosion ventilator in hazardous environments. The two explosion-proof switches allow the operation time to be driven 1 hour, 3 hours and continuous time, and the speed of the induction motor rotation was set in 3 stages at 2000 rpm, 2600 rpm and 3000 rpm to control the volume. The tested motor used a half-horsepower barrier three-phase induction motor and a full-bridge inverter to set the desired flow rate and operating time.

본 논문은 풍량 및 운전시간을 제어할 수 있는 방폭 타입 배풍기의 인버터 단자함 연구에 관한 것이다. 국내에서는 열악한 환경에서 작업 시에 풍량 및 운전 시간을 조정할 수 있는 배풍기가 없는 실정이다. 유해가스 및 폭발 위험성이 있는 환경에 적정한 방폭 배풍기의 운전 시간과 풍량을 제어할 수 있는 방폭 단자함을 제작하는 것이 목적이다. 2개의 방폭형 스위치를 사용하여 운전시간을 1 시간, 3 시간, 그리고 연속 시간으로 운전할 수 있도록 하였고, 유도전동기 회전 속도는 2000rpm, 2600rpm, 그리고 3000rpm으로 3 단계로 설정하여 풍량 제어하였다. 실험한 모터는 1/2 마력 3상 유도전동기 사용하였으며 풀 브리지 인버터를 제작하여 원하는 풍량과 운전시간 설정할 수 있도록 연구하였다.

Keywords

JKOHBZ_2018_v8n6_187_f0002.png 이미지

Fig. 1. Equivalent Circuit of the Induction Motor

JKOHBZ_2018_v8n6_187_f0003.png 이미지

Fig. 2. The explosion proof type's switch

JKOHBZ_2018_v8n6_187_f0004.png 이미지

Fig. 3. Block diagram of the PWM inverter system

JKOHBZ_2018_v8n6_187_f0005.png 이미지

Fig. 4. Switching wave of three phase PWM inverter

JKOHBZ_2018_v8n6_187_f0006.png 이미지

Fig. 5. PWM inverter load test

JKOHBZ_2018_v8n6_187_f0007.png 이미지

Fig. 7. The explosion proof type's inverter terminal

JKOHBZ_2018_v8n6_187_f0008.png 이미지

Fig. 6. Measure the 3-step wind mass with tachometer

Table 1. Maximum experimental safe gap according to the group of chemicals

JKOHBZ_2018_v8n6_187_t0001.png 이미지

Table 2. Strength of the motor container

JKOHBZ_2018_v8n6_187_t0002.png 이미지

Table 3. Define anti-explosion symbols

JKOHBZ_2018_v8n6_187_t0003.png 이미지

Table 4. Table of wind volume and speed test results for explosion proof fans

JKOHBZ_2018_v8n6_187_t0004.png 이미지

References

  1. S. Y. LEE. (1984). Classification and Structure of Explosion-proof Motor. Journal of Electrical World Monthly Magazine, 28-34.
  2. S. G. Yoon, J. H. Kim & Y. J. Kim. (2018). Optimal Design of Explosion-Proofed Actuator-Motor Assembly. The KSFM Journal of Fluid Machinery, 21(4), 17-23. https://doi.org/10.5293/kfma.2018.21.4.017
  3. D. J. Yoo, H. K. Lee & K. S Kim. (2010). A Study on the efficiency improvement about the explosion proof type's single phase motor for the lubricator pump. Proceedings of KSAE Autumn Conference, 2121-2123.
  4. J. H. Bae & J. W. Ahn. (2017). Design of exhauster system for high efficiency drive(I). Power Electronics Annual Conference, 7, 280-281.
  5. R. A. Strehlow & J. A. Nicholls, E. C. Magison & P. J. Schram. (1979). An Inverstigation of The Maximum Experimental Safe Gap Anomaly. Journal of Hazrdous Materials, 3, 1-15. https://doi.org/10.1016/0304-3894(79)85001-3
  6. S. Y. Wang, C. M. Lin, C. L. Tseng, J. H. Chou & B. L. Syu. (2016). Design of a fuzzy sliding-mode controller for induction motor vector control systems. Automatic Control Conference (CACS) 2016 International, 206-211.
  7. C. Attaianese, G. Tomasso, A. Damiano, i. Marogiu & A. Perfetto. (1999). A Novel Approach to Speed and Parameters Estimation in Induction Motor Drives. IEEE Transactions on Energy Conversion, 14(4), 939-945. https://doi.org/10.1109/60.815011
  8. N. A. Genesis, C. E. Emenike & I. O. Charles. (2017). A low cost method for generating constant volts per frequency control signals. Electro-Technology for National Development (NIGERCON) 2017 IEEE 3rd International Conference on, 994-999.
  9. M. H. Park & S. K. Sul. (1984). Microprocessor -Based Optimal-Efficiency Drive of an Induction Motor. Industrial Electronics IEEE Transactions on, IE-31(1), 69-73. https://doi.org/10.1109/TIE.1984.350023
  10. M. Varnovitsky. (1983). A Microcomputer- Based Control Signal Generator for a Three- Phase Switching Power Inverter. Industry Applications IEEE Transactions on, IA-19(2), 228-234. https://doi.org/10.1109/TIA.1983.4504186
  11. K. S. Rajashekara & J. Vithayathil. (1982). Microprocessor Based Sinusoidal PWM Inverter by DMA Transfer. Industrial Electronics IEEE Transactions on, IE-29(1), 46-51. https://doi.org/10.1109/TIE.1982.354132
  12. A. Munoz-Garcia, T. Lipo & D. Novotny. (1997). A new induction motor open-loop speed control capable of low frequency operation. IEEE Industry Applications Society. Annual Meeting.
  13. J. Ohnishi, H. Miyazaki & H. Okitsu. (1988). High Efficiency Drive of an Induction Motor by Means of V/F Ratio Control. in IECON, Tokushima.
  14. D. Lee & Y. Kim. (2007). Control of Single-Phase-to-Three-Phase AC/DC/AC/ PWM Converters for Induction Motor Drives. IEEE Transactions on Industrial Electronics, 54(2), 797-804. https://doi.org/10.1109/TIE.2007.891780
  15. B. S. Lee & Y. H. Kim. (2007). The Study of Determination to Equivalent Circuit Parameters for Single phase Induction Motor using MATLAB. Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, 21(1), 125-130. https://doi.org/10.5207/JIEIE.2007.21.1.125