DOI QR코드

DOI QR Code

3차원 SONOS 낸드 플래쉬 메모리 셀 적용을 위한 String 형태의 폴리실리콘 박막형 트랜지스터의 특성 연구

A Study on Poly-Si TFT characteristics with string structure for 3D SONOS NAND Flash Memory Cell

  • 최채형 (영남이공대학교 전자정보계열) ;
  • 최득성 (영남이공대학교 전자정보계열) ;
  • 정승현 (영남이공대학교 전자정보계열)
  • Choi, Chae-Hyoung (Div. of Electronics & Information Engineering, Yeungnam University College) ;
  • Choi, Deuk-Sung (Div. of Electronics & Information Engineering, Yeungnam University College) ;
  • Jeong, Seung-Hyun (Div. of Electronics & Information Engineering, Yeungnam University College)
  • 투고 : 2017.02.27
  • 심사 : 2017.07.17
  • 발행 : 2017.09.30

초록

본 논문은 3차원 낸드 플래쉬 기억 소자에 적용을 위해 소노스(SONOS) 형태로 기억 저장 절연막을 채용하고 채널로 폴리실리콘을 사용한 박막형 트랜지스터에 대해 연구하였다. 셀의 source/drain에는 불순물을 주입 하지 않았고, 셀 양 끝단에는 선택 트랜지스터를 배치하였다. 셀의 채널과 선택 트랜지스터의 source/drain 불순물 농도 변화에 대한 평가를 진행하여 공정 최적화를 하였다. 선택 트랜지스터의 농도 증가 시 채널 전류의 상승 및 삭제특성이 개선됨을 확인 하였는데 이는 GIDL에 의한 홀 생성이 증가하였기 때문이다. 최적화된 공정 변수에 대해 삭제와 쓰기 후 문턱전압의 프로그램 윈도우는 대략 2.5V를 얻었다. 터널 산화막 공정 온도에 대한 평가 결과 온도 증가 시 swing 및 신뢰성 항목인 bake 결과가 개선됨을 확인하였다.

In this paper, we have studied the characteristics of NAND Flash memory in SONOS Poly-Si Thin Film Transistor (Poly-Si TFT) device. Source/drain junctions(S/D) of cells were not implanted and selective transistors were located in the end of cells. We found the optimum conditions of process by means of the estimation for the doping concentration of channel and source/drain of selective transistor. As the doping concentration was increased, the channel current was increased and the characteristic of erase was improved. It was believed that the improvement of erase characteristic was probably due to the higher channel potential induced by GIDL current at the abrupt junction. In the condition of process optimum, program windows of threshold voltages were about 2.5V after writing and erasing. In addition, it was obtained that the swing value of poly Si TFT and the reliability by bake were enhanced by increasing process temperature of tunnel oxide.

키워드

참고문헌

  1. J. D. Lee, S. H. Hur, and J. D. Choi, "Effects of floating-gate interference on NAND Flash memory cell operation", IEEE Electron Device Lett., 23(5), 264 (2002). https://doi.org/10.1109/55.998871
  2. M. Park, K. Kim, J. H. Park, and J. H. Choi, "Direct field effect of neighboring cell transistor on cell-to-cell interference of NAND Flash cell arrays", IEEE Electron Device Lett., 30(2), 174 (2009). https://doi.org/10.1109/LED.2008.2009555
  3. C. M. Compagnoni, R. Gusmeroli, A. S. Spinelli, A. L. Lacaita, M. Bonanomi, and A. Visconti, "Statistical model for random telegraph noise in Flash memories", IEEE Trans. Electron Devices, 55(1), 388 (2008). https://doi.org/10.1109/TED.2007.910605
  4. A. Ghetti, C. Monzio Compagnoni, A. S. Spinelli, and A. Visconti, "Comprehensive analysis of random telegraph noise instability and its scaling in deca-nanometer Flash memories", IEEE Trans. Electron Devices, 56(8), 1746 (2009). https://doi.org/10.1109/TED.2009.2024031
  5. D. S. Choi, and S. K. Park, "Mechanism of Threshold voltage widening in sub-30 nm MLC NAND Flash cells after erase/ write cycling", Journal of the Korean Physical Society, 59(4), 2821 (2011). https://doi.org/10.3938/jkps.59.2821
  6. D. S. Choi, S. U. Choi, and S. K. Park, "Study of data retention characteristics with surrounding cell's state in a MLC NAND Flash Memory", Journal of the Institute of Electronics Engineers of Korea, 50(4), 999 (2013).
  7. K. N. Kim, "Technology for sub-50 nm DRAM and NAND Flash Manufacturing", Proc. IEEE International Electron Devices Meeting (IEDM), Washington, USA, 323, IEEE (2005).
  8. J. D. Choi, and K. S. Seol, "3D approaches for non-volatile memory", Symposium on VLSI Technology (VLSIT), Honolulu, HI, USA, 178, IEEE (2011).
  9. Y. H. Hsiao, H. T. Lue, T. H. Hsu, K. Y. Hsieh, and C. Y. Lu, "A critical examination of 3D stackable NAND Flash memory architectures by simulation study of the scaling capability", IEEE International Memory Workshop (IMW), 1, Seoul, South Korea, IEEE (2010).
  10. H. T. Lue, T. H. Hsu, Y. H. Hsiao, S. P. Hong, M. T. Wu, F. H. Hsu, N. Z. Lien, S. Y. Wang, J. Y. Hsieh, L. W. Yang, T. Yang, K. C. Chen, K. Y. Hsieh, and C. Y. Lu, "A highly scalable 8-layer 3D vertical-gate (VG) TFT NAND Flash using junction-free buried channel BE-SONOS device", Symposium on VLSI Technology (VLSIT), 216, Honolulu, HI, USA, IEEE (2011).
  11. J. H. Jang, H. S. Kim, W. S. Cho, H. S. Cho, J. H. Kim, S. I. Shim, Y. G. Jang, J. H. Jeong, B. K. Son, D. W. Kim, K. H. Kim, J. J. Shim, J. S. Lim, K. H. Kim, S. Y. Yi, J. Y. Lim, D. W. Chung, H. C. Moon, S. M. Hwang, J. W. Lee, Y. H. Son, U. I. Chung, and W. S. Lee, "Vertical cell array using TCAT(Terabit Cell Array Transistor) technology for ultra high density NAND flash memory", VLSI Symp. Technical Digest, 192, Honolulu, HI, USA, IEEE (2009).
  12. C. Y. Kang, "Barrier engineering in metal-aluminum oxidenitride- oxide-silicon (MANOS) flash memory", Current Applied Physics, 10(1), 27 (2010). https://doi.org/10.1016/j.cap.2009.12.007
  13. A. Maconi, A. Arreghini, C. Monzio Compagnoni, G. Van den bosch, A. S. Spinelli, J. Van Houdt, and A. L. Lacaita, "Comprehensive investigation of the impact of lateral charge migration on retention performance of planar and 3D SONOS devices", Solid-State Electronics, 74, 64 (2012). https://doi.org/10.1016/j.sse.2012.04.013
  14. G. Fortunato, "Polycrystalline silicon thin-film transistors: A continuous evolving technology", Thin Solid Films, 296, 82 (1997). https://doi.org/10.1016/S0040-6090(96)09378-9
  15. N. Gupta, and B. P. Tyagi, "An Analytical Model of the Influence of Grain Size on the Mobility and Transfer Characteristics of Polysilicon Thin-Film Transistors(TFTs)", Physica Scripta, 71, 225 (2005). https://doi.org/10.1238/Physica.Regular.071a00225